Loading…

Modifying the Hodgkin-Huxley Model for High Frequency AC Stimulation

Prior studies have shown that a reversible nerve conduction block can be induced by applying a high frequency alternating current (HFAC) electrical stimulus at frequencies above approximately 3kHz. The potential clinical and electrophysiological applications of this technique have led to a series of...

Full description

Saved in:
Bibliographic Details
Main Authors: Haeffele, B.D., Butera, R.J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 552
container_issue
container_start_page 550
container_title
container_volume
creator Haeffele, B.D.
Butera, R.J.
description Prior studies have shown that a reversible nerve conduction block can be induced by applying a high frequency alternating current (HFAC) electrical stimulus at frequencies above approximately 3kHz. The potential clinical and electrophysiological applications of this technique have led to a series of modeling studies analyzing the physiological mechanism that generates a HFAC conduction block; however, many of these studies have been based on axon models that are perhaps not valid for HFAC electrical stimulation. We show that the Hodgkin-Huxley model does not accurately predict trends observed in HFAC conduction block experiments on unmyelinated nerve fibers over a frequency range from 3kHz to 50kHz. Further, modifying the Hodgkin-Huxley model to incorporate a frequency-dependent membrane capacitance results in a significant change in the high frequency response of the model while still preserving the standard characteristics of action potential propagation
doi_str_mv 10.1109/CNE.2007.369731
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_4227336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4227336</ieee_id><sourcerecordid>4227336</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bba7a5e004f784181fa9f0ffdc7c8cf6ae6ae0ea8ea520d5de6d384391edd8af3</originalsourceid><addsrcrecordid>eNo9zMlOwzAUhWEzSZSSNQs2foGE6yGxvaxCS5AKLIB15cbXqSFNIINE3p5KDNKR_sUnHUKuGCSMgbnJH5cJB1CJyIwS7IhcMMmlBGW4OCYzZqSORZrKExIZpf-Mwem_yeycRH3_BgCCg2RGz8jtQ-uCn0JT0WGHtGhd9R6auBi_apzoAbGmvu1oEaodXXX4OWJTTnSR0-ch7MfaDqFtLsmZt3WP0W_n5HW1fMmLeP10d58v1nFgKh3i7dYqmyKA9EpLppm3xoP3rlSlLn1m8TBAq9GmHFzqMHNCS2EYOqetF3Ny_fMbEHHz0YW97aaN5FwJkYlvzmRQDA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modifying the Hodgkin-Huxley Model for High Frequency AC Stimulation</title><source>IEEE Xplore All Conference Series</source><creator>Haeffele, B.D. ; Butera, R.J.</creator><creatorcontrib>Haeffele, B.D. ; Butera, R.J.</creatorcontrib><description>Prior studies have shown that a reversible nerve conduction block can be induced by applying a high frequency alternating current (HFAC) electrical stimulus at frequencies above approximately 3kHz. The potential clinical and electrophysiological applications of this technique have led to a series of modeling studies analyzing the physiological mechanism that generates a HFAC conduction block; however, many of these studies have been based on axon models that are perhaps not valid for HFAC electrical stimulation. We show that the Hodgkin-Huxley model does not accurately predict trends observed in HFAC conduction block experiments on unmyelinated nerve fibers over a frequency range from 3kHz to 50kHz. Further, modifying the Hodgkin-Huxley model to incorporate a frequency-dependent membrane capacitance results in a significant change in the high frequency response of the model while still preserving the standard characteristics of action potential propagation</description><identifier>ISSN: 1948-3546</identifier><identifier>ISBN: 9781424407910</identifier><identifier>ISBN: 1424407915</identifier><identifier>EISSN: 1948-3554</identifier><identifier>EISBN: 1424407923</identifier><identifier>EISBN: 9781424407927</identifier><identifier>DOI: 10.1109/CNE.2007.369731</identifier><language>eng</language><publisher>IEEE</publisher><subject>Animals ; Biomedical engineering ; Biomembranes ; Capacitance ; Electrical stimulation ; Frequency ; Nerve fibers ; Neural engineering ; Predictive models ; Voltage</subject><ispartof>2007 3rd International IEEE/EMBS Conference on Neural Engineering, 2007, p.550-552</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4227336$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4227336$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Haeffele, B.D.</creatorcontrib><creatorcontrib>Butera, R.J.</creatorcontrib><title>Modifying the Hodgkin-Huxley Model for High Frequency AC Stimulation</title><title>2007 3rd International IEEE/EMBS Conference on Neural Engineering</title><addtitle>CNE</addtitle><description>Prior studies have shown that a reversible nerve conduction block can be induced by applying a high frequency alternating current (HFAC) electrical stimulus at frequencies above approximately 3kHz. The potential clinical and electrophysiological applications of this technique have led to a series of modeling studies analyzing the physiological mechanism that generates a HFAC conduction block; however, many of these studies have been based on axon models that are perhaps not valid for HFAC electrical stimulation. We show that the Hodgkin-Huxley model does not accurately predict trends observed in HFAC conduction block experiments on unmyelinated nerve fibers over a frequency range from 3kHz to 50kHz. Further, modifying the Hodgkin-Huxley model to incorporate a frequency-dependent membrane capacitance results in a significant change in the high frequency response of the model while still preserving the standard characteristics of action potential propagation</description><subject>Animals</subject><subject>Biomedical engineering</subject><subject>Biomembranes</subject><subject>Capacitance</subject><subject>Electrical stimulation</subject><subject>Frequency</subject><subject>Nerve fibers</subject><subject>Neural engineering</subject><subject>Predictive models</subject><subject>Voltage</subject><issn>1948-3546</issn><issn>1948-3554</issn><isbn>9781424407910</isbn><isbn>1424407915</isbn><isbn>1424407923</isbn><isbn>9781424407927</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2007</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9zMlOwzAUhWEzSZSSNQs2foGE6yGxvaxCS5AKLIB15cbXqSFNIINE3p5KDNKR_sUnHUKuGCSMgbnJH5cJB1CJyIwS7IhcMMmlBGW4OCYzZqSORZrKExIZpf-Mwem_yeycRH3_BgCCg2RGz8jtQ-uCn0JT0WGHtGhd9R6auBi_apzoAbGmvu1oEaodXXX4OWJTTnSR0-ch7MfaDqFtLsmZt3WP0W_n5HW1fMmLeP10d58v1nFgKh3i7dYqmyKA9EpLppm3xoP3rlSlLn1m8TBAq9GmHFzqMHNCS2EYOqetF3Ny_fMbEHHz0YW97aaN5FwJkYlvzmRQDA</recordid><startdate>200705</startdate><enddate>200705</enddate><creator>Haeffele, B.D.</creator><creator>Butera, R.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200705</creationdate><title>Modifying the Hodgkin-Huxley Model for High Frequency AC Stimulation</title><author>Haeffele, B.D. ; Butera, R.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bba7a5e004f784181fa9f0ffdc7c8cf6ae6ae0ea8ea520d5de6d384391edd8af3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Biomedical engineering</topic><topic>Biomembranes</topic><topic>Capacitance</topic><topic>Electrical stimulation</topic><topic>Frequency</topic><topic>Nerve fibers</topic><topic>Neural engineering</topic><topic>Predictive models</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Haeffele, B.D.</creatorcontrib><creatorcontrib>Butera, R.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Haeffele, B.D.</au><au>Butera, R.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modifying the Hodgkin-Huxley Model for High Frequency AC Stimulation</atitle><btitle>2007 3rd International IEEE/EMBS Conference on Neural Engineering</btitle><stitle>CNE</stitle><date>2007-05</date><risdate>2007</risdate><spage>550</spage><epage>552</epage><pages>550-552</pages><issn>1948-3546</issn><eissn>1948-3554</eissn><isbn>9781424407910</isbn><isbn>1424407915</isbn><eisbn>1424407923</eisbn><eisbn>9781424407927</eisbn><abstract>Prior studies have shown that a reversible nerve conduction block can be induced by applying a high frequency alternating current (HFAC) electrical stimulus at frequencies above approximately 3kHz. The potential clinical and electrophysiological applications of this technique have led to a series of modeling studies analyzing the physiological mechanism that generates a HFAC conduction block; however, many of these studies have been based on axon models that are perhaps not valid for HFAC electrical stimulation. We show that the Hodgkin-Huxley model does not accurately predict trends observed in HFAC conduction block experiments on unmyelinated nerve fibers over a frequency range from 3kHz to 50kHz. Further, modifying the Hodgkin-Huxley model to incorporate a frequency-dependent membrane capacitance results in a significant change in the high frequency response of the model while still preserving the standard characteristics of action potential propagation</abstract><pub>IEEE</pub><doi>10.1109/CNE.2007.369731</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-3546
ispartof 2007 3rd International IEEE/EMBS Conference on Neural Engineering, 2007, p.550-552
issn 1948-3546
1948-3554
language eng
recordid cdi_ieee_primary_4227336
source IEEE Xplore All Conference Series
subjects Animals
Biomedical engineering
Biomembranes
Capacitance
Electrical stimulation
Frequency
Nerve fibers
Neural engineering
Predictive models
Voltage
title Modifying the Hodgkin-Huxley Model for High Frequency AC Stimulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A38%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modifying%20the%20Hodgkin-Huxley%20Model%20for%20High%20Frequency%20AC%20Stimulation&rft.btitle=2007%203rd%20International%20IEEE/EMBS%20Conference%20on%20Neural%20Engineering&rft.au=Haeffele,%20B.D.&rft.date=2007-05&rft.spage=550&rft.epage=552&rft.pages=550-552&rft.issn=1948-3546&rft.eissn=1948-3554&rft.isbn=9781424407910&rft.isbn_list=1424407915&rft_id=info:doi/10.1109/CNE.2007.369731&rft.eisbn=1424407923&rft.eisbn_list=9781424407927&rft_dat=%3Cieee_CHZPO%3E4227336%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-bba7a5e004f784181fa9f0ffdc7c8cf6ae6ae0ea8ea520d5de6d384391edd8af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=4227336&rfr_iscdi=true