Loading…
Real-Time Control of the Hand by Intracortically Controlled Functional Neuromuscular Stimulation
The purpose of this study was to develop an animal model to evaluate the efficacy of a brain machine interface (BMI) to control a neuroprosthesis intended to restore hand function via functional neuromuscular stimulation (FNS). We have implemented the system in a single primate, whose limb could be...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of this study was to develop an animal model to evaluate the efficacy of a brain machine interface (BMI) to control a neuroprosthesis intended to restore hand function via functional neuromuscular stimulation (FNS). We have implemented the system in a single primate, whose limb could be temporarily paralyzed by a reversible peripheral nerve block Recordings from the primary motor cortex were obtained from a 100-electrode array in the intact monkey, and used to predict the activity of a variety of wrist and hand muscles. These predictions were calculated in real-time, and used as inputs to a 4 channel neuromuscular stimulator for electrically activating the paralyzed muscles. Here we demonstrate that the BMI can be used to restore voluntary control of wrist flexion following muscle paralysis. |
---|---|
ISSN: | 1945-7898 1945-7901 |
DOI: | 10.1109/ICORR.2007.4428464 |