Loading…

A CramÉr-Rao Bound Characterization of the EM-Algorithm Mean Speed of Convergence

This paper deals with the mean speed of convergence of the expectation-maximization (EM) algorithm. We show that the asymptotic behavior (in terms of the number of observations) of the EM algorithm can be characterized as a function of the Cramer-Rao bounds (CRBs) associated to the so-called incompl...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2008-06, Vol.56 (6), p.2218-2228
Main Authors: Herzet, C., Ramon, V., Renaux, A., Vandendorpe, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper deals with the mean speed of convergence of the expectation-maximization (EM) algorithm. We show that the asymptotic behavior (in terms of the number of observations) of the EM algorithm can be characterized as a function of the Cramer-Rao bounds (CRBs) associated to the so-called incomplete and complete data sets defined within the EM-algorithm framework. We particularize our result to the case of a complete data set defined as the concatenation of the observation vector and a vector of nuisance parameters, independent of the parameter of interest. In this particular case, we show that the CRB associated to the complete data set is nothing but the well-known modified CRB. Finally, we show by simulation that the proposed expression enables to properly characterize the EM-algorithm mean speed of convergence from the CRB behavior when the size of the observation set is large enough.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2008.917024