Loading…
FFD bin packing for item sizes with distributions on [0,1/2]
We study the expected behavior of the FFD binpacking algorithm applied to items whose sizes are distributed in accordance with a Poisson process with rate N on the interval [0,1/2] of item sizes. By viewing the algorithm as a succession of queueing processes we show that the expected wasted space fo...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the expected behavior of the FFD binpacking algorithm applied to items whose sizes are distributed in accordance with a Poisson process with rate N on the interval [0,1/2] of item sizes. By viewing the algorithm as a succession of queueing processes we show that the expected wasted space for FFD bin-packing is bounded above by 9.4 bins, independent of N. We extend this upper bound to a FFD bin-packing of items in accordance with a non-homogeneous Poisson process with a nonincreasing intensity function λ(t) on [0,1/2]. |
---|---|
ISSN: | 0272-5428 |
DOI: | 10.1109/SFCS.1986.18 |