Loading…
Supervised Learning Errors by Radial Basis Function Neural Networks and Regularization Networks
There is a gap between the theoretical results of regularization theory and practical suitability of regularization-derived networks (RN). On the other hand, radial basis function networks (RBF) that can be seen as a special case of regularization networks, have a rich selection of learning algorith...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There is a gap between the theoretical results of regularization theory and practical suitability of regularization-derived networks (RN). On the other hand, radial basis function networks (RBF) that can be seen as a special case of regularization networks, have a rich selection of learning algorithms. In this work we study a relationship between RN and RBF, and show that theoretical estimates for RN hold for a concrete RBF applied on real-world data. |
---|---|
DOI: | 10.1109/FGCNS.2008.57 |