Loading…
Active Microelectronic Neurosensor Arrays for Implantable Brain Communication Interfaces
We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a cortical microelectrode array to an external computer for neural control applications. Our implantable microsystem enables 16-channel broadband neural...
Saved in:
Published in: | IEEE transactions on neural systems and rehabilitation engineering 2009-08, Vol.17 (4), p.339-345 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a cortical microelectrode array to an external computer for neural control applications. Our implantable microsystem enables 16-channel broadband neural recording in a nonhuman primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including radio frequency by induction, or infrared light via photovoltaic conversion. As of the time of this report, the implant has been tested as a subchronic unit in nonhuman primates (~ 1 month), yielding robust spike and broadband neural data on all available channels. |
---|---|
ISSN: | 1534-4320 1558-0210 |
DOI: | 10.1109/TNSRE.2009.2024310 |