Loading…
Uniqueness of the general mixed H/sub 2//H/sub /spl infin// optimal controller
A convex analysis approach to the general mixed H/sub 2//H/sub /spl infin// optimal control design with single and multiple H/sub /spl infin// constraints is developed. The system consists of a plant and stable weights on the H/sub 2/ and H/sub /spl infin// transfer functions, and is linear-time-inv...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A convex analysis approach to the general mixed H/sub 2//H/sub /spl infin// optimal control design with single and multiple H/sub /spl infin// constraints is developed. The system consists of a plant and stable weights on the H/sub 2/ and H/sub /spl infin// transfer functions, and is linear-time-invariant. The controller order is relaxed to an unknown but optimal order and the nature of the solution is examined. It is shown that the optimal controller is unique through the use of a Youla parametrization and convex analysis. Uniqueness is combined with the Kuhn-Tucker conditions to characterise the solution to the mixed problem with a finite set of H/sub /spl infin// constraints. Finally, the nature of a fixed order controller is examined. |
---|---|
DOI: | 10.1109/ACC.1995.520991 |