Loading…

Nonstationary Brain Source Separation for Multiclass Motor Imagery

This paper describes a method to recover task-related brain sources in the context of multiclass brain--computer interfaces (BCIs) based on noninvasive EEG. We extend the method joint approximate diagonalization (JAD) for spatial filtering using a maximum likelihood framework. This generic formulati...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering 2010-02, Vol.57 (2), p.469-478
Main Authors: Gouy-Pailler, CÉdric, Congedo, Marco, Brunner, Clemens, Jutten, Christian, Pfurtscheller, Gert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes a method to recover task-related brain sources in the context of multiclass brain--computer interfaces (BCIs) based on noninvasive EEG. We extend the method joint approximate diagonalization (JAD) for spatial filtering using a maximum likelihood framework. This generic formulation: 1) bridges the gap between the common spatial patterns (CSPs) and blind source separation of nonstationary sources; and 2) leads to a neurophysiologically adapted version of JAD, accounting for the successive activations/deactivations of brain sources during motor imagery (MI) trials. Using dataset 2a of BCI Competition IV (2008) in which nine subjects were involved in a four-class two-session MI-based BCI experiment, a quantitative evaluation of our extension is provided by comparing its performance against JAD and CSP in the case of cross-validation, as well as session-to-session transfer. While JAD, as already proposed in other works, does not prove to be significantly better than classical one-versus-rest CSP, our extension is shown to perform significantly better than CSP for cross-validated and session-to-session performance. The extension of JAD introduced in this paper yields among the best session-to-session transfer results presented so far for this particular dataset; thus, it appears to be of great interest for real-life BCIs.
ISSN:0018-9294
1558-2531
DOI:10.1109/TBME.2009.2032162