Loading…
Effect of Bipolar Cuff Electrode Design on Block Thresholds in High-Frequency Electrical Neural Conduction Block
Many medical conditions are characterized by undesired or pathological peripheral neurological activity. The local delivery of high-frequency alternating currents (HFAC) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and may provide a treatment alterna...
Saved in:
Published in: | IEEE transactions on neural systems and rehabilitation engineering 2009-10, Vol.17 (5), p.469-477 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c511t-4ac5d5bff67fa0d66c9a74901d02f6a907c55f5424c5f5a4419e428a0ff1d3433 |
---|---|
cites | cdi_FETCH-LOGICAL-c511t-4ac5d5bff67fa0d66c9a74901d02f6a907c55f5424c5f5a4419e428a0ff1d3433 |
container_end_page | 477 |
container_issue | 5 |
container_start_page | 469 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 17 |
creator | Ackermann, D. Michael Foldes, Emily L. Bhadra, Niloy Kilgore, Kevin L. |
description | Many medical conditions are characterized by undesired or pathological peripheral neurological activity. The local delivery of high-frequency alternating currents (HFAC) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and may provide a treatment alternative for eliminating pathological neural activity in these conditions. This work represents the first formal study of electrode design for high-frequency nerve block, and demonstrates that the interpolar separation distance for a bipolar electrode influences the current amplitudes required to achieve conduction block in both computer simulations and mammalian whole nerve experiments. The minimal current required to achieve block is also dependent on the diameter of the fibers being blocked and the electrode-fiber distance. Single fiber simulations suggest that minimizing the block threshold can be achieved by maximizing both the bipolar activating function (by adjusting the bipolar electrode contact separation distance) and a synergistic addition of membrane sodium currents generated by each of the two bipolar electrode contacts. For a rat sciatic nerve, 1.0-2.0 mm represented the optimal interpolar distance for minimizing current delivery. |
doi_str_mv | 10.1109/TNSRE.2009.2034069 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_5288619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5288619</ieee_id><sourcerecordid>2568874701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-4ac5d5bff67fa0d66c9a74901d02f6a907c55f5424c5f5a4419e428a0ff1d3433</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhi0EoiXwB0BCFgc4bfH4c32pRENKkaoiQThbrtdOXDbrYGeR-u9xyFI-DnDxWJ7nHc2MX4SeAjkBIPr18urTx8UJJUTXg3Ei9T10DEK0DaFA7u_vjDecUXKEHpVyQwgoKdRDdAS65UQDP0bbRQje7XAK-CxuU28zno8h4EVfX3PqPH7rS1wNOA34rE_uC16usy_r1HcFxwFfxNW6Oc_-6-gHdzvJorM9vvJjrmGehm50u_hT_xg9CLYv_skUZ-jz-WI5v2guP7x7P39z2TgBsGu4daIT1yFIFSzppHTaKq4JdIQGaTVRToggOOWuBss5aM9pa0kI0DHO2AydHupux-uN75wfdrUds81xY_OtSTaaPzNDXJtV-mYYl5xLWgu8mgrkVKcrO7OJxfm-t4NPYzGt1ELVXuV_ScU4UN6qPfnynyQFRrVSUMEXf4E3acxDXZjRoLjQUH98hugBcjmVkn24mw6I2TvE_HCI2TvETA6poue_7-WXZLJEBZ4dgOi9v0sL2rYSNPsOaHnAAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917459120</pqid></control><display><type>article</type><title>Effect of Bipolar Cuff Electrode Design on Block Thresholds in High-Frequency Electrical Neural Conduction Block</title><source>Alma/SFX Local Collection</source><creator>Ackermann, D. Michael ; Foldes, Emily L. ; Bhadra, Niloy ; Kilgore, Kevin L.</creator><creatorcontrib>Ackermann, D. Michael ; Foldes, Emily L. ; Bhadra, Niloy ; Kilgore, Kevin L.</creatorcontrib><description>Many medical conditions are characterized by undesired or pathological peripheral neurological activity. The local delivery of high-frequency alternating currents (HFAC) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and may provide a treatment alternative for eliminating pathological neural activity in these conditions. This work represents the first formal study of electrode design for high-frequency nerve block, and demonstrates that the interpolar separation distance for a bipolar electrode influences the current amplitudes required to achieve conduction block in both computer simulations and mammalian whole nerve experiments. The minimal current required to achieve block is also dependent on the diameter of the fibers being blocked and the electrode-fiber distance. Single fiber simulations suggest that minimizing the block threshold can be achieved by maximizing both the bipolar activating function (by adjusting the bipolar electrode contact separation distance) and a synergistic addition of membrane sodium currents generated by each of the two bipolar electrode contacts. For a rat sciatic nerve, 1.0-2.0 mm represented the optimal interpolar distance for minimizing current delivery.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2009.2034069</identifier><identifier>PMID: 19840914</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Action Potentials ; Biomedical electrodes ; Biomedical engineering ; Biomedical imaging ; Biomembranes ; Bipolar ; Computational modeling ; Computer Simulation ; Computer-Aided Design ; depolarization ; Differential Threshold - physiology ; Electric Stimulation - instrumentation ; electrode ; Electrodes ; Electrodes, Implanted ; Equipment Design ; Equipment Failure Analysis ; Frequency ; high frequency ; Medical conditions ; Models, Neurological ; Muscles ; nerve block ; Nerve Block - instrumentation ; nerve cuff ; Pathology ; peripheral nerve ; Peripheral Nerves - physiology</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2009-10, Vol.17 (5), p.469-477</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><rights>2009 IEEE 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-4ac5d5bff67fa0d66c9a74901d02f6a907c55f5424c5f5a4419e428a0ff1d3433</citedby><cites>FETCH-LOGICAL-c511t-4ac5d5bff67fa0d66c9a74901d02f6a907c55f5424c5f5a4419e428a0ff1d3433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19840914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ackermann, D. Michael</creatorcontrib><creatorcontrib>Foldes, Emily L.</creatorcontrib><creatorcontrib>Bhadra, Niloy</creatorcontrib><creatorcontrib>Kilgore, Kevin L.</creatorcontrib><title>Effect of Bipolar Cuff Electrode Design on Block Thresholds in High-Frequency Electrical Neural Conduction Block</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Many medical conditions are characterized by undesired or pathological peripheral neurological activity. The local delivery of high-frequency alternating currents (HFAC) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and may provide a treatment alternative for eliminating pathological neural activity in these conditions. This work represents the first formal study of electrode design for high-frequency nerve block, and demonstrates that the interpolar separation distance for a bipolar electrode influences the current amplitudes required to achieve conduction block in both computer simulations and mammalian whole nerve experiments. The minimal current required to achieve block is also dependent on the diameter of the fibers being blocked and the electrode-fiber distance. Single fiber simulations suggest that minimizing the block threshold can be achieved by maximizing both the bipolar activating function (by adjusting the bipolar electrode contact separation distance) and a synergistic addition of membrane sodium currents generated by each of the two bipolar electrode contacts. For a rat sciatic nerve, 1.0-2.0 mm represented the optimal interpolar distance for minimizing current delivery.</description><subject>Action Potentials</subject><subject>Biomedical electrodes</subject><subject>Biomedical engineering</subject><subject>Biomedical imaging</subject><subject>Biomembranes</subject><subject>Bipolar</subject><subject>Computational modeling</subject><subject>Computer Simulation</subject><subject>Computer-Aided Design</subject><subject>depolarization</subject><subject>Differential Threshold - physiology</subject><subject>Electric Stimulation - instrumentation</subject><subject>electrode</subject><subject>Electrodes</subject><subject>Electrodes, Implanted</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Frequency</subject><subject>high frequency</subject><subject>Medical conditions</subject><subject>Models, Neurological</subject><subject>Muscles</subject><subject>nerve block</subject><subject>Nerve Block - instrumentation</subject><subject>nerve cuff</subject><subject>Pathology</subject><subject>peripheral nerve</subject><subject>Peripheral Nerves - physiology</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkk1vEzEQhi0EoiXwB0BCFgc4bfH4c32pRENKkaoiQThbrtdOXDbrYGeR-u9xyFI-DnDxWJ7nHc2MX4SeAjkBIPr18urTx8UJJUTXg3Ei9T10DEK0DaFA7u_vjDecUXKEHpVyQwgoKdRDdAS65UQDP0bbRQje7XAK-CxuU28zno8h4EVfX3PqPH7rS1wNOA34rE_uC16usy_r1HcFxwFfxNW6Oc_-6-gHdzvJorM9vvJjrmGehm50u_hT_xg9CLYv_skUZ-jz-WI5v2guP7x7P39z2TgBsGu4daIT1yFIFSzppHTaKq4JdIQGaTVRToggOOWuBss5aM9pa0kI0DHO2AydHupux-uN75wfdrUds81xY_OtSTaaPzNDXJtV-mYYl5xLWgu8mgrkVKcrO7OJxfm-t4NPYzGt1ELVXuV_ScU4UN6qPfnynyQFRrVSUMEXf4E3acxDXZjRoLjQUH98hugBcjmVkn24mw6I2TvE_HCI2TvETA6poue_7-WXZLJEBZ4dgOi9v0sL2rYSNPsOaHnAAQ</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Ackermann, D. Michael</creator><creator>Foldes, Emily L.</creator><creator>Bhadra, Niloy</creator><creator>Kilgore, Kevin L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091001</creationdate><title>Effect of Bipolar Cuff Electrode Design on Block Thresholds in High-Frequency Electrical Neural Conduction Block</title><author>Ackermann, D. Michael ; Foldes, Emily L. ; Bhadra, Niloy ; Kilgore, Kevin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-4ac5d5bff67fa0d66c9a74901d02f6a907c55f5424c5f5a4419e428a0ff1d3433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Action Potentials</topic><topic>Biomedical electrodes</topic><topic>Biomedical engineering</topic><topic>Biomedical imaging</topic><topic>Biomembranes</topic><topic>Bipolar</topic><topic>Computational modeling</topic><topic>Computer Simulation</topic><topic>Computer-Aided Design</topic><topic>depolarization</topic><topic>Differential Threshold - physiology</topic><topic>Electric Stimulation - instrumentation</topic><topic>electrode</topic><topic>Electrodes</topic><topic>Electrodes, Implanted</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Frequency</topic><topic>high frequency</topic><topic>Medical conditions</topic><topic>Models, Neurological</topic><topic>Muscles</topic><topic>nerve block</topic><topic>Nerve Block - instrumentation</topic><topic>nerve cuff</topic><topic>Pathology</topic><topic>peripheral nerve</topic><topic>Peripheral Nerves - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ackermann, D. Michael</creatorcontrib><creatorcontrib>Foldes, Emily L.</creatorcontrib><creatorcontrib>Bhadra, Niloy</creatorcontrib><creatorcontrib>Kilgore, Kevin L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ackermann, D. Michael</au><au>Foldes, Emily L.</au><au>Bhadra, Niloy</au><au>Kilgore, Kevin L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Bipolar Cuff Electrode Design on Block Thresholds in High-Frequency Electrical Neural Conduction Block</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>17</volume><issue>5</issue><spage>469</spage><epage>477</epage><pages>469-477</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Many medical conditions are characterized by undesired or pathological peripheral neurological activity. The local delivery of high-frequency alternating currents (HFAC) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and may provide a treatment alternative for eliminating pathological neural activity in these conditions. This work represents the first formal study of electrode design for high-frequency nerve block, and demonstrates that the interpolar separation distance for a bipolar electrode influences the current amplitudes required to achieve conduction block in both computer simulations and mammalian whole nerve experiments. The minimal current required to achieve block is also dependent on the diameter of the fibers being blocked and the electrode-fiber distance. Single fiber simulations suggest that minimizing the block threshold can be achieved by maximizing both the bipolar activating function (by adjusting the bipolar electrode contact separation distance) and a synergistic addition of membrane sodium currents generated by each of the two bipolar electrode contacts. For a rat sciatic nerve, 1.0-2.0 mm represented the optimal interpolar distance for minimizing current delivery.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19840914</pmid><doi>10.1109/TNSRE.2009.2034069</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2009-10, Vol.17 (5), p.469-477 |
issn | 1534-4320 1558-0210 |
language | eng |
recordid | cdi_ieee_primary_5288619 |
source | Alma/SFX Local Collection |
subjects | Action Potentials Biomedical electrodes Biomedical engineering Biomedical imaging Biomembranes Bipolar Computational modeling Computer Simulation Computer-Aided Design depolarization Differential Threshold - physiology Electric Stimulation - instrumentation electrode Electrodes Electrodes, Implanted Equipment Design Equipment Failure Analysis Frequency high frequency Medical conditions Models, Neurological Muscles nerve block Nerve Block - instrumentation nerve cuff Pathology peripheral nerve Peripheral Nerves - physiology |
title | Effect of Bipolar Cuff Electrode Design on Block Thresholds in High-Frequency Electrical Neural Conduction Block |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Bipolar%20Cuff%20Electrode%20Design%20on%20Block%20Thresholds%20in%20High-Frequency%20Electrical%20Neural%20Conduction%20Block&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Ackermann,%20D.%20Michael&rft.date=2009-10-01&rft.volume=17&rft.issue=5&rft.spage=469&rft.epage=477&rft.pages=469-477&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2009.2034069&rft_dat=%3Cproquest_ieee_%3E2568874701%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-4ac5d5bff67fa0d66c9a74901d02f6a907c55f5424c5f5a4419e428a0ff1d3433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=917459120&rft_id=info:pmid/19840914&rft_ieee_id=5288619&rfr_iscdi=true |