Loading…

Effect of Bipolar Cuff Electrode Design on Block Thresholds in High-Frequency Electrical Neural Conduction Block

Many medical conditions are characterized by undesired or pathological peripheral neurological activity. The local delivery of high-frequency alternating currents (HFAC) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and may provide a treatment alterna...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2009-10, Vol.17 (5), p.469-477
Main Authors: Ackermann, D. Michael, Foldes, Emily L., Bhadra, Niloy, Kilgore, Kevin L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-4ac5d5bff67fa0d66c9a74901d02f6a907c55f5424c5f5a4419e428a0ff1d3433
cites cdi_FETCH-LOGICAL-c511t-4ac5d5bff67fa0d66c9a74901d02f6a907c55f5424c5f5a4419e428a0ff1d3433
container_end_page 477
container_issue 5
container_start_page 469
container_title IEEE transactions on neural systems and rehabilitation engineering
container_volume 17
creator Ackermann, D. Michael
Foldes, Emily L.
Bhadra, Niloy
Kilgore, Kevin L.
description Many medical conditions are characterized by undesired or pathological peripheral neurological activity. The local delivery of high-frequency alternating currents (HFAC) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and may provide a treatment alternative for eliminating pathological neural activity in these conditions. This work represents the first formal study of electrode design for high-frequency nerve block, and demonstrates that the interpolar separation distance for a bipolar electrode influences the current amplitudes required to achieve conduction block in both computer simulations and mammalian whole nerve experiments. The minimal current required to achieve block is also dependent on the diameter of the fibers being blocked and the electrode-fiber distance. Single fiber simulations suggest that minimizing the block threshold can be achieved by maximizing both the bipolar activating function (by adjusting the bipolar electrode contact separation distance) and a synergistic addition of membrane sodium currents generated by each of the two bipolar electrode contacts. For a rat sciatic nerve, 1.0-2.0 mm represented the optimal interpolar distance for minimizing current delivery.
doi_str_mv 10.1109/TNSRE.2009.2034069
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_5288619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5288619</ieee_id><sourcerecordid>2568874701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-4ac5d5bff67fa0d66c9a74901d02f6a907c55f5424c5f5a4419e428a0ff1d3433</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhi0EoiXwB0BCFgc4bfH4c32pRENKkaoiQThbrtdOXDbrYGeR-u9xyFI-DnDxWJ7nHc2MX4SeAjkBIPr18urTx8UJJUTXg3Ei9T10DEK0DaFA7u_vjDecUXKEHpVyQwgoKdRDdAS65UQDP0bbRQje7XAK-CxuU28zno8h4EVfX3PqPH7rS1wNOA34rE_uC16usy_r1HcFxwFfxNW6Oc_-6-gHdzvJorM9vvJjrmGehm50u_hT_xg9CLYv_skUZ-jz-WI5v2guP7x7P39z2TgBsGu4daIT1yFIFSzppHTaKq4JdIQGaTVRToggOOWuBss5aM9pa0kI0DHO2AydHupux-uN75wfdrUds81xY_OtSTaaPzNDXJtV-mYYl5xLWgu8mgrkVKcrO7OJxfm-t4NPYzGt1ELVXuV_ScU4UN6qPfnynyQFRrVSUMEXf4E3acxDXZjRoLjQUH98hugBcjmVkn24mw6I2TvE_HCI2TvETA6poue_7-WXZLJEBZ4dgOi9v0sL2rYSNPsOaHnAAQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917459120</pqid></control><display><type>article</type><title>Effect of Bipolar Cuff Electrode Design on Block Thresholds in High-Frequency Electrical Neural Conduction Block</title><source>Alma/SFX Local Collection</source><creator>Ackermann, D. Michael ; Foldes, Emily L. ; Bhadra, Niloy ; Kilgore, Kevin L.</creator><creatorcontrib>Ackermann, D. Michael ; Foldes, Emily L. ; Bhadra, Niloy ; Kilgore, Kevin L.</creatorcontrib><description>Many medical conditions are characterized by undesired or pathological peripheral neurological activity. The local delivery of high-frequency alternating currents (HFAC) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and may provide a treatment alternative for eliminating pathological neural activity in these conditions. This work represents the first formal study of electrode design for high-frequency nerve block, and demonstrates that the interpolar separation distance for a bipolar electrode influences the current amplitudes required to achieve conduction block in both computer simulations and mammalian whole nerve experiments. The minimal current required to achieve block is also dependent on the diameter of the fibers being blocked and the electrode-fiber distance. Single fiber simulations suggest that minimizing the block threshold can be achieved by maximizing both the bipolar activating function (by adjusting the bipolar electrode contact separation distance) and a synergistic addition of membrane sodium currents generated by each of the two bipolar electrode contacts. For a rat sciatic nerve, 1.0-2.0 mm represented the optimal interpolar distance for minimizing current delivery.</description><identifier>ISSN: 1534-4320</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2009.2034069</identifier><identifier>PMID: 19840914</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Action Potentials ; Biomedical electrodes ; Biomedical engineering ; Biomedical imaging ; Biomembranes ; Bipolar ; Computational modeling ; Computer Simulation ; Computer-Aided Design ; depolarization ; Differential Threshold - physiology ; Electric Stimulation - instrumentation ; electrode ; Electrodes ; Electrodes, Implanted ; Equipment Design ; Equipment Failure Analysis ; Frequency ; high frequency ; Medical conditions ; Models, Neurological ; Muscles ; nerve block ; Nerve Block - instrumentation ; nerve cuff ; Pathology ; peripheral nerve ; Peripheral Nerves - physiology</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2009-10, Vol.17 (5), p.469-477</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><rights>2009 IEEE 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-4ac5d5bff67fa0d66c9a74901d02f6a907c55f5424c5f5a4419e428a0ff1d3433</citedby><cites>FETCH-LOGICAL-c511t-4ac5d5bff67fa0d66c9a74901d02f6a907c55f5424c5f5a4419e428a0ff1d3433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19840914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ackermann, D. Michael</creatorcontrib><creatorcontrib>Foldes, Emily L.</creatorcontrib><creatorcontrib>Bhadra, Niloy</creatorcontrib><creatorcontrib>Kilgore, Kevin L.</creatorcontrib><title>Effect of Bipolar Cuff Electrode Design on Block Thresholds in High-Frequency Electrical Neural Conduction Block</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description>Many medical conditions are characterized by undesired or pathological peripheral neurological activity. The local delivery of high-frequency alternating currents (HFAC) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and may provide a treatment alternative for eliminating pathological neural activity in these conditions. This work represents the first formal study of electrode design for high-frequency nerve block, and demonstrates that the interpolar separation distance for a bipolar electrode influences the current amplitudes required to achieve conduction block in both computer simulations and mammalian whole nerve experiments. The minimal current required to achieve block is also dependent on the diameter of the fibers being blocked and the electrode-fiber distance. Single fiber simulations suggest that minimizing the block threshold can be achieved by maximizing both the bipolar activating function (by adjusting the bipolar electrode contact separation distance) and a synergistic addition of membrane sodium currents generated by each of the two bipolar electrode contacts. For a rat sciatic nerve, 1.0-2.0 mm represented the optimal interpolar distance for minimizing current delivery.</description><subject>Action Potentials</subject><subject>Biomedical electrodes</subject><subject>Biomedical engineering</subject><subject>Biomedical imaging</subject><subject>Biomembranes</subject><subject>Bipolar</subject><subject>Computational modeling</subject><subject>Computer Simulation</subject><subject>Computer-Aided Design</subject><subject>depolarization</subject><subject>Differential Threshold - physiology</subject><subject>Electric Stimulation - instrumentation</subject><subject>electrode</subject><subject>Electrodes</subject><subject>Electrodes, Implanted</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Frequency</subject><subject>high frequency</subject><subject>Medical conditions</subject><subject>Models, Neurological</subject><subject>Muscles</subject><subject>nerve block</subject><subject>Nerve Block - instrumentation</subject><subject>nerve cuff</subject><subject>Pathology</subject><subject>peripheral nerve</subject><subject>Peripheral Nerves - physiology</subject><issn>1534-4320</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkk1vEzEQhi0EoiXwB0BCFgc4bfH4c32pRENKkaoiQThbrtdOXDbrYGeR-u9xyFI-DnDxWJ7nHc2MX4SeAjkBIPr18urTx8UJJUTXg3Ei9T10DEK0DaFA7u_vjDecUXKEHpVyQwgoKdRDdAS65UQDP0bbRQje7XAK-CxuU28zno8h4EVfX3PqPH7rS1wNOA34rE_uC16usy_r1HcFxwFfxNW6Oc_-6-gHdzvJorM9vvJjrmGehm50u_hT_xg9CLYv_skUZ-jz-WI5v2guP7x7P39z2TgBsGu4daIT1yFIFSzppHTaKq4JdIQGaTVRToggOOWuBss5aM9pa0kI0DHO2AydHupux-uN75wfdrUds81xY_OtSTaaPzNDXJtV-mYYl5xLWgu8mgrkVKcrO7OJxfm-t4NPYzGt1ELVXuV_ScU4UN6qPfnynyQFRrVSUMEXf4E3acxDXZjRoLjQUH98hugBcjmVkn24mw6I2TvE_HCI2TvETA6poue_7-WXZLJEBZ4dgOi9v0sL2rYSNPsOaHnAAQ</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Ackermann, D. Michael</creator><creator>Foldes, Emily L.</creator><creator>Bhadra, Niloy</creator><creator>Kilgore, Kevin L.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091001</creationdate><title>Effect of Bipolar Cuff Electrode Design on Block Thresholds in High-Frequency Electrical Neural Conduction Block</title><author>Ackermann, D. Michael ; Foldes, Emily L. ; Bhadra, Niloy ; Kilgore, Kevin L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-4ac5d5bff67fa0d66c9a74901d02f6a907c55f5424c5f5a4419e428a0ff1d3433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Action Potentials</topic><topic>Biomedical electrodes</topic><topic>Biomedical engineering</topic><topic>Biomedical imaging</topic><topic>Biomembranes</topic><topic>Bipolar</topic><topic>Computational modeling</topic><topic>Computer Simulation</topic><topic>Computer-Aided Design</topic><topic>depolarization</topic><topic>Differential Threshold - physiology</topic><topic>Electric Stimulation - instrumentation</topic><topic>electrode</topic><topic>Electrodes</topic><topic>Electrodes, Implanted</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Frequency</topic><topic>high frequency</topic><topic>Medical conditions</topic><topic>Models, Neurological</topic><topic>Muscles</topic><topic>nerve block</topic><topic>Nerve Block - instrumentation</topic><topic>nerve cuff</topic><topic>Pathology</topic><topic>peripheral nerve</topic><topic>Peripheral Nerves - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ackermann, D. Michael</creatorcontrib><creatorcontrib>Foldes, Emily L.</creatorcontrib><creatorcontrib>Bhadra, Niloy</creatorcontrib><creatorcontrib>Kilgore, Kevin L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ackermann, D. Michael</au><au>Foldes, Emily L.</au><au>Bhadra, Niloy</au><au>Kilgore, Kevin L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Bipolar Cuff Electrode Design on Block Thresholds in High-Frequency Electrical Neural Conduction Block</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>17</volume><issue>5</issue><spage>469</spage><epage>477</epage><pages>469-477</pages><issn>1534-4320</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract>Many medical conditions are characterized by undesired or pathological peripheral neurological activity. The local delivery of high-frequency alternating currents (HFAC) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and may provide a treatment alternative for eliminating pathological neural activity in these conditions. This work represents the first formal study of electrode design for high-frequency nerve block, and demonstrates that the interpolar separation distance for a bipolar electrode influences the current amplitudes required to achieve conduction block in both computer simulations and mammalian whole nerve experiments. The minimal current required to achieve block is also dependent on the diameter of the fibers being blocked and the electrode-fiber distance. Single fiber simulations suggest that minimizing the block threshold can be achieved by maximizing both the bipolar activating function (by adjusting the bipolar electrode contact separation distance) and a synergistic addition of membrane sodium currents generated by each of the two bipolar electrode contacts. For a rat sciatic nerve, 1.0-2.0 mm represented the optimal interpolar distance for minimizing current delivery.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19840914</pmid><doi>10.1109/TNSRE.2009.2034069</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1534-4320
ispartof IEEE transactions on neural systems and rehabilitation engineering, 2009-10, Vol.17 (5), p.469-477
issn 1534-4320
1558-0210
language eng
recordid cdi_ieee_primary_5288619
source Alma/SFX Local Collection
subjects Action Potentials
Biomedical electrodes
Biomedical engineering
Biomedical imaging
Biomembranes
Bipolar
Computational modeling
Computer Simulation
Computer-Aided Design
depolarization
Differential Threshold - physiology
Electric Stimulation - instrumentation
electrode
Electrodes
Electrodes, Implanted
Equipment Design
Equipment Failure Analysis
Frequency
high frequency
Medical conditions
Models, Neurological
Muscles
nerve block
Nerve Block - instrumentation
nerve cuff
Pathology
peripheral nerve
Peripheral Nerves - physiology
title Effect of Bipolar Cuff Electrode Design on Block Thresholds in High-Frequency Electrical Neural Conduction Block
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Bipolar%20Cuff%20Electrode%20Design%20on%20Block%20Thresholds%20in%20High-Frequency%20Electrical%20Neural%20Conduction%20Block&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Ackermann,%20D.%20Michael&rft.date=2009-10-01&rft.volume=17&rft.issue=5&rft.spage=469&rft.epage=477&rft.pages=469-477&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2009.2034069&rft_dat=%3Cproquest_ieee_%3E2568874701%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-4ac5d5bff67fa0d66c9a74901d02f6a907c55f5424c5f5a4419e428a0ff1d3433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=917459120&rft_id=info:pmid/19840914&rft_ieee_id=5288619&rfr_iscdi=true