Loading…

Effect of Bipolar Cuff Electrode Design on Block Thresholds in High-Frequency Electrical Neural Conduction Block

Many medical conditions are characterized by undesired or pathological peripheral neurological activity. The local delivery of high-frequency alternating currents (HFAC) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and may provide a treatment alterna...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on neural systems and rehabilitation engineering 2009-10, Vol.17 (5), p.469-477
Main Authors: Ackermann, D. Michael, Foldes, Emily L., Bhadra, Niloy, Kilgore, Kevin L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Many medical conditions are characterized by undesired or pathological peripheral neurological activity. The local delivery of high-frequency alternating currents (HFAC) has been shown to be a fast acting and quickly reversible method of blocking neural conduction and may provide a treatment alternative for eliminating pathological neural activity in these conditions. This work represents the first formal study of electrode design for high-frequency nerve block, and demonstrates that the interpolar separation distance for a bipolar electrode influences the current amplitudes required to achieve conduction block in both computer simulations and mammalian whole nerve experiments. The minimal current required to achieve block is also dependent on the diameter of the fibers being blocked and the electrode-fiber distance. Single fiber simulations suggest that minimizing the block threshold can be achieved by maximizing both the bipolar activating function (by adjusting the bipolar electrode contact separation distance) and a synergistic addition of membrane sodium currents generated by each of the two bipolar electrode contacts. For a rat sciatic nerve, 1.0-2.0 mm represented the optimal interpolar distance for minimizing current delivery.
ISSN:1534-4320
1558-0210
DOI:10.1109/TNSRE.2009.2034069