Loading…

Clustering microarray time-series data using expectation maximization and multiple profile alignment

A common problem in biology is to partition a set of experimental data into clusters in such a way that the data points within the same cluster are highly similar while data points in different clusters are very different. In this direction, clustering microarray time-series data via pairwise alignm...

Full description

Saved in:
Bibliographic Details
Main Authors: Subhani, N., Rueda, L., Ngom, A., Burden, C.J.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 7
container_issue
container_start_page 2
container_title
container_volume
creator Subhani, N.
Rueda, L.
Ngom, A.
Burden, C.J.
description A common problem in biology is to partition a set of experimental data into clusters in such a way that the data points within the same cluster are highly similar while data points in different clusters are very different. In this direction, clustering microarray time-series data via pairwise alignment of piece-wise linear profiles has been recently introduced. We propose a EM clustering approach based on a multiple alignment of natural cubic spline representations of gene expression profiles. The multiple alignment is achieved by minimizing the sum of integrated squared errors over a time-interval, defined on a set of profiles. Preliminary experiments on a well-known data set of 221 pre-clustered Saccharomyces cerevisiae gene expression profiles yield encouraging results with 83.26% accuracy.
doi_str_mv 10.1109/BIBMW.2009.5332128
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5332128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5332128</ieee_id><sourcerecordid>5332128</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f051eaf5f1d191f34ca7520fcf54c7e4d33dbf8bc54d0847333e78055d660be63</originalsourceid><addsrcrecordid>eNotUMlqwzAUFJRAmzQ_0F70A3YlP8nLsTFdAim9BHoMsvUUVCzbSDIk_fo6JHMZZmEOQ8gTZynnrHrZbDdfP2nGWJVKgIxn5R1ZcpEJIXnGYUGWl6wCEDK_J-sQftkMIWHuPBBdd1OI6G1_pM62flDeqzON1mESZhsD1SoqOoVLA08jtlFFO_TUqZN19u8qVK-pm7poxw7p6AdjZ1adPfYO-_hIFkZ1Adc3XpH9-9u-_kx23x_b-nWX2IrFxDDJURlpuOYVNyBaVciMmdZI0RYoNIBuTNm0UmhWigIAsCiZlDrPWYM5rMjzddYi4mH01il_PtxOgX9nZFi5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Clustering microarray time-series data using expectation maximization and multiple profile alignment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Subhani, N. ; Rueda, L. ; Ngom, A. ; Burden, C.J.</creator><creatorcontrib>Subhani, N. ; Rueda, L. ; Ngom, A. ; Burden, C.J.</creatorcontrib><description>A common problem in biology is to partition a set of experimental data into clusters in such a way that the data points within the same cluster are highly similar while data points in different clusters are very different. In this direction, clustering microarray time-series data via pairwise alignment of piece-wise linear profiles has been recently introduced. We propose a EM clustering approach based on a multiple alignment of natural cubic spline representations of gene expression profiles. The multiple alignment is achieved by minimizing the sum of integrated squared errors over a time-interval, defined on a set of profiles. Preliminary experiments on a well-known data set of 221 pre-clustered Saccharomyces cerevisiae gene expression profiles yield encouraging results with 83.26% accuracy.</description><identifier>ISBN: 1424451213</identifier><identifier>ISBN: 9781424451210</identifier><identifier>DOI: 10.1109/BIBMW.2009.5332128</identifier><identifier>LCCN: 2009933456</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Bayesian methods ; Bioinformatics ; Biology ; Clustering ; Computer science ; Cubic Spline ; Gene expression ; Gene Expression Profiles ; Genomics ; Microarrays ; Piecewise linear techniques ; Poles and towers ; Profile Alignment ; Spline ; Time-Series Data</subject><ispartof>2009 IEEE International Conference on Bioinformatics and Biomedicine Workshop, 2009, p.2-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5332128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5332128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Subhani, N.</creatorcontrib><creatorcontrib>Rueda, L.</creatorcontrib><creatorcontrib>Ngom, A.</creatorcontrib><creatorcontrib>Burden, C.J.</creatorcontrib><title>Clustering microarray time-series data using expectation maximization and multiple profile alignment</title><title>2009 IEEE International Conference on Bioinformatics and Biomedicine Workshop</title><addtitle>BIBMW</addtitle><description>A common problem in biology is to partition a set of experimental data into clusters in such a way that the data points within the same cluster are highly similar while data points in different clusters are very different. In this direction, clustering microarray time-series data via pairwise alignment of piece-wise linear profiles has been recently introduced. We propose a EM clustering approach based on a multiple alignment of natural cubic spline representations of gene expression profiles. The multiple alignment is achieved by minimizing the sum of integrated squared errors over a time-interval, defined on a set of profiles. Preliminary experiments on a well-known data set of 221 pre-clustered Saccharomyces cerevisiae gene expression profiles yield encouraging results with 83.26% accuracy.</description><subject>Australia</subject><subject>Bayesian methods</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Clustering</subject><subject>Computer science</subject><subject>Cubic Spline</subject><subject>Gene expression</subject><subject>Gene Expression Profiles</subject><subject>Genomics</subject><subject>Microarrays</subject><subject>Piecewise linear techniques</subject><subject>Poles and towers</subject><subject>Profile Alignment</subject><subject>Spline</subject><subject>Time-Series Data</subject><isbn>1424451213</isbn><isbn>9781424451210</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUMlqwzAUFJRAmzQ_0F70A3YlP8nLsTFdAim9BHoMsvUUVCzbSDIk_fo6JHMZZmEOQ8gTZynnrHrZbDdfP2nGWJVKgIxn5R1ZcpEJIXnGYUGWl6wCEDK_J-sQftkMIWHuPBBdd1OI6G1_pM62flDeqzON1mESZhsD1SoqOoVLA08jtlFFO_TUqZN19u8qVK-pm7poxw7p6AdjZ1adPfYO-_hIFkZ1Adc3XpH9-9u-_kx23x_b-nWX2IrFxDDJURlpuOYVNyBaVciMmdZI0RYoNIBuTNm0UmhWigIAsCiZlDrPWYM5rMjzddYi4mH01il_PtxOgX9nZFi5</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Subhani, N.</creator><creator>Rueda, L.</creator><creator>Ngom, A.</creator><creator>Burden, C.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200911</creationdate><title>Clustering microarray time-series data using expectation maximization and multiple profile alignment</title><author>Subhani, N. ; Rueda, L. ; Ngom, A. ; Burden, C.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f051eaf5f1d191f34ca7520fcf54c7e4d33dbf8bc54d0847333e78055d660be63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Australia</topic><topic>Bayesian methods</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Clustering</topic><topic>Computer science</topic><topic>Cubic Spline</topic><topic>Gene expression</topic><topic>Gene Expression Profiles</topic><topic>Genomics</topic><topic>Microarrays</topic><topic>Piecewise linear techniques</topic><topic>Poles and towers</topic><topic>Profile Alignment</topic><topic>Spline</topic><topic>Time-Series Data</topic><toplevel>online_resources</toplevel><creatorcontrib>Subhani, N.</creatorcontrib><creatorcontrib>Rueda, L.</creatorcontrib><creatorcontrib>Ngom, A.</creatorcontrib><creatorcontrib>Burden, C.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Subhani, N.</au><au>Rueda, L.</au><au>Ngom, A.</au><au>Burden, C.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Clustering microarray time-series data using expectation maximization and multiple profile alignment</atitle><btitle>2009 IEEE International Conference on Bioinformatics and Biomedicine Workshop</btitle><stitle>BIBMW</stitle><date>2009-11</date><risdate>2009</risdate><spage>2</spage><epage>7</epage><pages>2-7</pages><isbn>1424451213</isbn><isbn>9781424451210</isbn><abstract>A common problem in biology is to partition a set of experimental data into clusters in such a way that the data points within the same cluster are highly similar while data points in different clusters are very different. In this direction, clustering microarray time-series data via pairwise alignment of piece-wise linear profiles has been recently introduced. We propose a EM clustering approach based on a multiple alignment of natural cubic spline representations of gene expression profiles. The multiple alignment is achieved by minimizing the sum of integrated squared errors over a time-interval, defined on a set of profiles. Preliminary experiments on a well-known data set of 221 pre-clustered Saccharomyces cerevisiae gene expression profiles yield encouraging results with 83.26% accuracy.</abstract><pub>IEEE</pub><doi>10.1109/BIBMW.2009.5332128</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424451213
ispartof 2009 IEEE International Conference on Bioinformatics and Biomedicine Workshop, 2009, p.2-7
issn
language eng
recordid cdi_ieee_primary_5332128
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Australia
Bayesian methods
Bioinformatics
Biology
Clustering
Computer science
Cubic Spline
Gene expression
Gene Expression Profiles
Genomics
Microarrays
Piecewise linear techniques
Poles and towers
Profile Alignment
Spline
Time-Series Data
title Clustering microarray time-series data using expectation maximization and multiple profile alignment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Clustering%20microarray%20time-series%20data%20using%20expectation%20maximization%20and%20multiple%20profile%20alignment&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20Workshop&rft.au=Subhani,%20N.&rft.date=2009-11&rft.spage=2&rft.epage=7&rft.pages=2-7&rft.isbn=1424451213&rft.isbn_list=9781424451210&rft_id=info:doi/10.1109/BIBMW.2009.5332128&rft_dat=%3Cieee_6IE%3E5332128%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-f051eaf5f1d191f34ca7520fcf54c7e4d33dbf8bc54d0847333e78055d660be63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5332128&rfr_iscdi=true