Loading…
Clustering microarray time-series data using expectation maximization and multiple profile alignment
A common problem in biology is to partition a set of experimental data into clusters in such a way that the data points within the same cluster are highly similar while data points in different clusters are very different. In this direction, clustering microarray time-series data via pairwise alignm...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7 |
container_issue | |
container_start_page | 2 |
container_title | |
container_volume | |
creator | Subhani, N. Rueda, L. Ngom, A. Burden, C.J. |
description | A common problem in biology is to partition a set of experimental data into clusters in such a way that the data points within the same cluster are highly similar while data points in different clusters are very different. In this direction, clustering microarray time-series data via pairwise alignment of piece-wise linear profiles has been recently introduced. We propose a EM clustering approach based on a multiple alignment of natural cubic spline representations of gene expression profiles. The multiple alignment is achieved by minimizing the sum of integrated squared errors over a time-interval, defined on a set of profiles. Preliminary experiments on a well-known data set of 221 pre-clustered Saccharomyces cerevisiae gene expression profiles yield encouraging results with 83.26% accuracy. |
doi_str_mv | 10.1109/BIBMW.2009.5332128 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5332128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5332128</ieee_id><sourcerecordid>5332128</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f051eaf5f1d191f34ca7520fcf54c7e4d33dbf8bc54d0847333e78055d660be63</originalsourceid><addsrcrecordid>eNotUMlqwzAUFJRAmzQ_0F70A3YlP8nLsTFdAim9BHoMsvUUVCzbSDIk_fo6JHMZZmEOQ8gTZynnrHrZbDdfP2nGWJVKgIxn5R1ZcpEJIXnGYUGWl6wCEDK_J-sQftkMIWHuPBBdd1OI6G1_pM62flDeqzON1mESZhsD1SoqOoVLA08jtlFFO_TUqZN19u8qVK-pm7poxw7p6AdjZ1adPfYO-_hIFkZ1Adc3XpH9-9u-_kx23x_b-nWX2IrFxDDJURlpuOYVNyBaVciMmdZI0RYoNIBuTNm0UmhWigIAsCiZlDrPWYM5rMjzddYi4mH01il_PtxOgX9nZFi5</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Clustering microarray time-series data using expectation maximization and multiple profile alignment</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Subhani, N. ; Rueda, L. ; Ngom, A. ; Burden, C.J.</creator><creatorcontrib>Subhani, N. ; Rueda, L. ; Ngom, A. ; Burden, C.J.</creatorcontrib><description>A common problem in biology is to partition a set of experimental data into clusters in such a way that the data points within the same cluster are highly similar while data points in different clusters are very different. In this direction, clustering microarray time-series data via pairwise alignment of piece-wise linear profiles has been recently introduced. We propose a EM clustering approach based on a multiple alignment of natural cubic spline representations of gene expression profiles. The multiple alignment is achieved by minimizing the sum of integrated squared errors over a time-interval, defined on a set of profiles. Preliminary experiments on a well-known data set of 221 pre-clustered Saccharomyces cerevisiae gene expression profiles yield encouraging results with 83.26% accuracy.</description><identifier>ISBN: 1424451213</identifier><identifier>ISBN: 9781424451210</identifier><identifier>DOI: 10.1109/BIBMW.2009.5332128</identifier><identifier>LCCN: 2009933456</identifier><language>eng</language><publisher>IEEE</publisher><subject>Australia ; Bayesian methods ; Bioinformatics ; Biology ; Clustering ; Computer science ; Cubic Spline ; Gene expression ; Gene Expression Profiles ; Genomics ; Microarrays ; Piecewise linear techniques ; Poles and towers ; Profile Alignment ; Spline ; Time-Series Data</subject><ispartof>2009 IEEE International Conference on Bioinformatics and Biomedicine Workshop, 2009, p.2-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5332128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5332128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Subhani, N.</creatorcontrib><creatorcontrib>Rueda, L.</creatorcontrib><creatorcontrib>Ngom, A.</creatorcontrib><creatorcontrib>Burden, C.J.</creatorcontrib><title>Clustering microarray time-series data using expectation maximization and multiple profile alignment</title><title>2009 IEEE International Conference on Bioinformatics and Biomedicine Workshop</title><addtitle>BIBMW</addtitle><description>A common problem in biology is to partition a set of experimental data into clusters in such a way that the data points within the same cluster are highly similar while data points in different clusters are very different. In this direction, clustering microarray time-series data via pairwise alignment of piece-wise linear profiles has been recently introduced. We propose a EM clustering approach based on a multiple alignment of natural cubic spline representations of gene expression profiles. The multiple alignment is achieved by minimizing the sum of integrated squared errors over a time-interval, defined on a set of profiles. Preliminary experiments on a well-known data set of 221 pre-clustered Saccharomyces cerevisiae gene expression profiles yield encouraging results with 83.26% accuracy.</description><subject>Australia</subject><subject>Bayesian methods</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Clustering</subject><subject>Computer science</subject><subject>Cubic Spline</subject><subject>Gene expression</subject><subject>Gene Expression Profiles</subject><subject>Genomics</subject><subject>Microarrays</subject><subject>Piecewise linear techniques</subject><subject>Poles and towers</subject><subject>Profile Alignment</subject><subject>Spline</subject><subject>Time-Series Data</subject><isbn>1424451213</isbn><isbn>9781424451210</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2009</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotUMlqwzAUFJRAmzQ_0F70A3YlP8nLsTFdAim9BHoMsvUUVCzbSDIk_fo6JHMZZmEOQ8gTZynnrHrZbDdfP2nGWJVKgIxn5R1ZcpEJIXnGYUGWl6wCEDK_J-sQftkMIWHuPBBdd1OI6G1_pM62flDeqzON1mESZhsD1SoqOoVLA08jtlFFO_TUqZN19u8qVK-pm7poxw7p6AdjZ1adPfYO-_hIFkZ1Adc3XpH9-9u-_kx23x_b-nWX2IrFxDDJURlpuOYVNyBaVciMmdZI0RYoNIBuTNm0UmhWigIAsCiZlDrPWYM5rMjzddYi4mH01il_PtxOgX9nZFi5</recordid><startdate>200911</startdate><enddate>200911</enddate><creator>Subhani, N.</creator><creator>Rueda, L.</creator><creator>Ngom, A.</creator><creator>Burden, C.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>200911</creationdate><title>Clustering microarray time-series data using expectation maximization and multiple profile alignment</title><author>Subhani, N. ; Rueda, L. ; Ngom, A. ; Burden, C.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f051eaf5f1d191f34ca7520fcf54c7e4d33dbf8bc54d0847333e78055d660be63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Australia</topic><topic>Bayesian methods</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Clustering</topic><topic>Computer science</topic><topic>Cubic Spline</topic><topic>Gene expression</topic><topic>Gene Expression Profiles</topic><topic>Genomics</topic><topic>Microarrays</topic><topic>Piecewise linear techniques</topic><topic>Poles and towers</topic><topic>Profile Alignment</topic><topic>Spline</topic><topic>Time-Series Data</topic><toplevel>online_resources</toplevel><creatorcontrib>Subhani, N.</creatorcontrib><creatorcontrib>Rueda, L.</creatorcontrib><creatorcontrib>Ngom, A.</creatorcontrib><creatorcontrib>Burden, C.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Subhani, N.</au><au>Rueda, L.</au><au>Ngom, A.</au><au>Burden, C.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Clustering microarray time-series data using expectation maximization and multiple profile alignment</atitle><btitle>2009 IEEE International Conference on Bioinformatics and Biomedicine Workshop</btitle><stitle>BIBMW</stitle><date>2009-11</date><risdate>2009</risdate><spage>2</spage><epage>7</epage><pages>2-7</pages><isbn>1424451213</isbn><isbn>9781424451210</isbn><abstract>A common problem in biology is to partition a set of experimental data into clusters in such a way that the data points within the same cluster are highly similar while data points in different clusters are very different. In this direction, clustering microarray time-series data via pairwise alignment of piece-wise linear profiles has been recently introduced. We propose a EM clustering approach based on a multiple alignment of natural cubic spline representations of gene expression profiles. The multiple alignment is achieved by minimizing the sum of integrated squared errors over a time-interval, defined on a set of profiles. Preliminary experiments on a well-known data set of 221 pre-clustered Saccharomyces cerevisiae gene expression profiles yield encouraging results with 83.26% accuracy.</abstract><pub>IEEE</pub><doi>10.1109/BIBMW.2009.5332128</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424451213 |
ispartof | 2009 IEEE International Conference on Bioinformatics and Biomedicine Workshop, 2009, p.2-7 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5332128 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Australia Bayesian methods Bioinformatics Biology Clustering Computer science Cubic Spline Gene expression Gene Expression Profiles Genomics Microarrays Piecewise linear techniques Poles and towers Profile Alignment Spline Time-Series Data |
title | Clustering microarray time-series data using expectation maximization and multiple profile alignment |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A48%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Clustering%20microarray%20time-series%20data%20using%20expectation%20maximization%20and%20multiple%20profile%20alignment&rft.btitle=2009%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20Workshop&rft.au=Subhani,%20N.&rft.date=2009-11&rft.spage=2&rft.epage=7&rft.pages=2-7&rft.isbn=1424451213&rft.isbn_list=9781424451210&rft_id=info:doi/10.1109/BIBMW.2009.5332128&rft_dat=%3Cieee_6IE%3E5332128%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-f051eaf5f1d191f34ca7520fcf54c7e4d33dbf8bc54d0847333e78055d660be63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5332128&rfr_iscdi=true |