Loading…
Covariance Estimation in Decomposable Gaussian Graphical Models
Graphical models are a framework for representing and exploiting prior conditional independence structures within distributions using graphs. In the Gaussian case, these models are directly related to the sparsity of the inverse covariance (concentration) matrix and allow for improved covariance est...
Saved in:
Published in: | IEEE transactions on signal processing 2010-03, Vol.58 (3), p.1482-1492 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c427t-e18e15e1e17e2d857124bc589659b3f3fa2e66b28ada1814d1bd640153815c313 |
---|---|
cites | cdi_FETCH-LOGICAL-c427t-e18e15e1e17e2d857124bc589659b3f3fa2e66b28ada1814d1bd640153815c313 |
container_end_page | 1492 |
container_issue | 3 |
container_start_page | 1482 |
container_title | IEEE transactions on signal processing |
container_volume | 58 |
creator | Wiesel, A. Eldar, Y.C. Hero, A.O. |
description | Graphical models are a framework for representing and exploiting prior conditional independence structures within distributions using graphs. In the Gaussian case, these models are directly related to the sparsity of the inverse covariance (concentration) matrix and allow for improved covariance estimation with lower computational complexity. We consider concentration estimation with the mean-squared error (MSE) as the objective, in a special type of model known as decomposable. This model includes, for example, the well known banded structure and other cases encountered in practice. Our first contribution is the derivation and analysis of the minimum variance unbiased estimator (MVUE) in decomposable graphical models. We provide a simple closed form solution to the MVUE and compare it with the classical maximum likelihood estimator (MLE) in terms of performance and complexity. Next, we extend the celebrated Stein's unbiased risk estimate (SURE) to graphical models. Using SURE, we prove that the MSE of the MVUE is always smaller or equal to that of the biased MLE, and that the MVUE itself is dominated by other approaches. In addition, we propose the use of SURE as a constructive mechanism for deriving new covariance estimators. Similarly to the classical MLE, all of our proposed estimators have simple closed form solutions but result in a significant reduction in MSE. |
doi_str_mv | 10.1109/TSP.2009.2037350 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_5340697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5340697</ieee_id><sourcerecordid>1671229154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-e18e15e1e17e2d857124bc589659b3f3fa2e66b28ada1814d1bd640153815c313</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoqNW74GURRC-rmXznJFK1CoqCCt5CdncWV7abmrSC_96UFg8evGQCed6ZzEPIAdAzAGrPX56fzhilNh9cc0k3yA5YASUVWm3mO5W8lEa_bZPdlD4oBSGs2iEX4_DlY-eHGovrNO-mft6FoeiG4grrMJ2F5Ksei4lfpJSpYhL97L2rfV88hAb7tEe2Wt8n3F_XEXm9uX4Z35b3j5O78eV9WQum5yWCQZAICBpZY6QGJqpaGqukrXjLW89QqYoZ33gwIBqoGiUoSG5A1hz4iJys-s5i-Fxgmrtpl2rsez9gWCSnBVdS8xwYkdN_SVB5OLMgRUaP_qAfYRGHvIezWZ5R-SsZoiuojiGliK2bxawpfjugbqneZfVuqd6t1efI8bqvT1lVG7PeLv3mGBMMmFnOP1xxHSL-PksuqLKa_wCbSYn6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919486181</pqid></control><display><type>article</type><title>Covariance Estimation in Decomposable Gaussian Graphical Models</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wiesel, A. ; Eldar, Y.C. ; Hero, A.O.</creator><creatorcontrib>Wiesel, A. ; Eldar, Y.C. ; Hero, A.O.</creatorcontrib><description>Graphical models are a framework for representing and exploiting prior conditional independence structures within distributions using graphs. In the Gaussian case, these models are directly related to the sparsity of the inverse covariance (concentration) matrix and allow for improved covariance estimation with lower computational complexity. We consider concentration estimation with the mean-squared error (MSE) as the objective, in a special type of model known as decomposable. This model includes, for example, the well known banded structure and other cases encountered in practice. Our first contribution is the derivation and analysis of the minimum variance unbiased estimator (MVUE) in decomposable graphical models. We provide a simple closed form solution to the MVUE and compare it with the classical maximum likelihood estimator (MLE) in terms of performance and complexity. Next, we extend the celebrated Stein's unbiased risk estimate (SURE) to graphical models. Using SURE, we prove that the MSE of the MVUE is always smaller or equal to that of the biased MLE, and that the MVUE itself is dominated by other approaches. In addition, we propose the use of SURE as a constructive mechanism for deriving new covariance estimators. Similarly to the classical MLE, all of our proposed estimators have simple closed form solutions but result in a significant reduction in MSE.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2009.2037350</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Ambient intelligence ; Applied sciences ; Array signal processing ; Closed-form solution ; Complexity ; Computational complexity ; Covariance ; Covariance estimation ; Covariance matrix ; Decomposition ; Estimators ; Exact sciences and technology ; Exact solutions ; Gaussian ; Gaussian distribution ; Graphical models ; Information, signal and communications theory ; Markov analysis ; Mathematical analysis ; Mathematical models ; Maximum likelihood estimation ; minimum variance unbiased estimation ; Miscellaneous ; Parameter estimation ; Signal processing ; Signal processing algorithms ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2010-03, Vol.58 (3), p.1482-1492</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-e18e15e1e17e2d857124bc589659b3f3fa2e66b28ada1814d1bd640153815c313</citedby><cites>FETCH-LOGICAL-c427t-e18e15e1e17e2d857124bc589659b3f3fa2e66b28ada1814d1bd640153815c313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5340697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22421284$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wiesel, A.</creatorcontrib><creatorcontrib>Eldar, Y.C.</creatorcontrib><creatorcontrib>Hero, A.O.</creatorcontrib><title>Covariance Estimation in Decomposable Gaussian Graphical Models</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Graphical models are a framework for representing and exploiting prior conditional independence structures within distributions using graphs. In the Gaussian case, these models are directly related to the sparsity of the inverse covariance (concentration) matrix and allow for improved covariance estimation with lower computational complexity. We consider concentration estimation with the mean-squared error (MSE) as the objective, in a special type of model known as decomposable. This model includes, for example, the well known banded structure and other cases encountered in practice. Our first contribution is the derivation and analysis of the minimum variance unbiased estimator (MVUE) in decomposable graphical models. We provide a simple closed form solution to the MVUE and compare it with the classical maximum likelihood estimator (MLE) in terms of performance and complexity. Next, we extend the celebrated Stein's unbiased risk estimate (SURE) to graphical models. Using SURE, we prove that the MSE of the MVUE is always smaller or equal to that of the biased MLE, and that the MVUE itself is dominated by other approaches. In addition, we propose the use of SURE as a constructive mechanism for deriving new covariance estimators. Similarly to the classical MLE, all of our proposed estimators have simple closed form solutions but result in a significant reduction in MSE.</description><subject>Ambient intelligence</subject><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Closed-form solution</subject><subject>Complexity</subject><subject>Computational complexity</subject><subject>Covariance</subject><subject>Covariance estimation</subject><subject>Covariance matrix</subject><subject>Decomposition</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Gaussian</subject><subject>Gaussian distribution</subject><subject>Graphical models</subject><subject>Information, signal and communications theory</subject><subject>Markov analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>minimum variance unbiased estimation</subject><subject>Miscellaneous</subject><subject>Parameter estimation</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoqNW74GURRC-rmXznJFK1CoqCCt5CdncWV7abmrSC_96UFg8evGQCed6ZzEPIAdAzAGrPX56fzhilNh9cc0k3yA5YASUVWm3mO5W8lEa_bZPdlD4oBSGs2iEX4_DlY-eHGovrNO-mft6FoeiG4grrMJ2F5Ksei4lfpJSpYhL97L2rfV88hAb7tEe2Wt8n3F_XEXm9uX4Z35b3j5O78eV9WQum5yWCQZAICBpZY6QGJqpaGqukrXjLW89QqYoZ33gwIBqoGiUoSG5A1hz4iJys-s5i-Fxgmrtpl2rsez9gWCSnBVdS8xwYkdN_SVB5OLMgRUaP_qAfYRGHvIezWZ5R-SsZoiuojiGliK2bxawpfjugbqneZfVuqd6t1efI8bqvT1lVG7PeLv3mGBMMmFnOP1xxHSL-PksuqLKa_wCbSYn6</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Wiesel, A.</creator><creator>Eldar, Y.C.</creator><creator>Hero, A.O.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100301</creationdate><title>Covariance Estimation in Decomposable Gaussian Graphical Models</title><author>Wiesel, A. ; Eldar, Y.C. ; Hero, A.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-e18e15e1e17e2d857124bc589659b3f3fa2e66b28ada1814d1bd640153815c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Ambient intelligence</topic><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Closed-form solution</topic><topic>Complexity</topic><topic>Computational complexity</topic><topic>Covariance</topic><topic>Covariance estimation</topic><topic>Covariance matrix</topic><topic>Decomposition</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Gaussian</topic><topic>Gaussian distribution</topic><topic>Graphical models</topic><topic>Information, signal and communications theory</topic><topic>Markov analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>minimum variance unbiased estimation</topic><topic>Miscellaneous</topic><topic>Parameter estimation</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiesel, A.</creatorcontrib><creatorcontrib>Eldar, Y.C.</creatorcontrib><creatorcontrib>Hero, A.O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiesel, A.</au><au>Eldar, Y.C.</au><au>Hero, A.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covariance Estimation in Decomposable Gaussian Graphical Models</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>58</volume><issue>3</issue><spage>1482</spage><epage>1492</epage><pages>1482-1492</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Graphical models are a framework for representing and exploiting prior conditional independence structures within distributions using graphs. In the Gaussian case, these models are directly related to the sparsity of the inverse covariance (concentration) matrix and allow for improved covariance estimation with lower computational complexity. We consider concentration estimation with the mean-squared error (MSE) as the objective, in a special type of model known as decomposable. This model includes, for example, the well known banded structure and other cases encountered in practice. Our first contribution is the derivation and analysis of the minimum variance unbiased estimator (MVUE) in decomposable graphical models. We provide a simple closed form solution to the MVUE and compare it with the classical maximum likelihood estimator (MLE) in terms of performance and complexity. Next, we extend the celebrated Stein's unbiased risk estimate (SURE) to graphical models. Using SURE, we prove that the MSE of the MVUE is always smaller or equal to that of the biased MLE, and that the MVUE itself is dominated by other approaches. In addition, we propose the use of SURE as a constructive mechanism for deriving new covariance estimators. Similarly to the classical MLE, all of our proposed estimators have simple closed form solutions but result in a significant reduction in MSE.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2009.2037350</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2010-03, Vol.58 (3), p.1482-1492 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_5340697 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Ambient intelligence Applied sciences Array signal processing Closed-form solution Complexity Computational complexity Covariance Covariance estimation Covariance matrix Decomposition Estimators Exact sciences and technology Exact solutions Gaussian Gaussian distribution Graphical models Information, signal and communications theory Markov analysis Mathematical analysis Mathematical models Maximum likelihood estimation minimum variance unbiased estimation Miscellaneous Parameter estimation Signal processing Signal processing algorithms Studies Telecommunications and information theory |
title | Covariance Estimation in Decomposable Gaussian Graphical Models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covariance%20Estimation%20in%20Decomposable%20Gaussian%20Graphical%20Models&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Wiesel,%20A.&rft.date=2010-03-01&rft.volume=58&rft.issue=3&rft.spage=1482&rft.epage=1492&rft.pages=1482-1492&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2009.2037350&rft_dat=%3Cproquest_ieee_%3E1671229154%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-e18e15e1e17e2d857124bc589659b3f3fa2e66b28ada1814d1bd640153815c313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919486181&rft_id=info:pmid/&rft_ieee_id=5340697&rfr_iscdi=true |