Loading…

Covariance Estimation in Decomposable Gaussian Graphical Models

Graphical models are a framework for representing and exploiting prior conditional independence structures within distributions using graphs. In the Gaussian case, these models are directly related to the sparsity of the inverse covariance (concentration) matrix and allow for improved covariance est...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2010-03, Vol.58 (3), p.1482-1492
Main Authors: Wiesel, A., Eldar, Y.C., Hero, A.O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-e18e15e1e17e2d857124bc589659b3f3fa2e66b28ada1814d1bd640153815c313
cites cdi_FETCH-LOGICAL-c427t-e18e15e1e17e2d857124bc589659b3f3fa2e66b28ada1814d1bd640153815c313
container_end_page 1492
container_issue 3
container_start_page 1482
container_title IEEE transactions on signal processing
container_volume 58
creator Wiesel, A.
Eldar, Y.C.
Hero, A.O.
description Graphical models are a framework for representing and exploiting prior conditional independence structures within distributions using graphs. In the Gaussian case, these models are directly related to the sparsity of the inverse covariance (concentration) matrix and allow for improved covariance estimation with lower computational complexity. We consider concentration estimation with the mean-squared error (MSE) as the objective, in a special type of model known as decomposable. This model includes, for example, the well known banded structure and other cases encountered in practice. Our first contribution is the derivation and analysis of the minimum variance unbiased estimator (MVUE) in decomposable graphical models. We provide a simple closed form solution to the MVUE and compare it with the classical maximum likelihood estimator (MLE) in terms of performance and complexity. Next, we extend the celebrated Stein's unbiased risk estimate (SURE) to graphical models. Using SURE, we prove that the MSE of the MVUE is always smaller or equal to that of the biased MLE, and that the MVUE itself is dominated by other approaches. In addition, we propose the use of SURE as a constructive mechanism for deriving new covariance estimators. Similarly to the classical MLE, all of our proposed estimators have simple closed form solutions but result in a significant reduction in MSE.
doi_str_mv 10.1109/TSP.2009.2037350
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_5340697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5340697</ieee_id><sourcerecordid>1671229154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-e18e15e1e17e2d857124bc589659b3f3fa2e66b28ada1814d1bd640153815c313</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoqNW74GURRC-rmXznJFK1CoqCCt5CdncWV7abmrSC_96UFg8evGQCed6ZzEPIAdAzAGrPX56fzhilNh9cc0k3yA5YASUVWm3mO5W8lEa_bZPdlD4oBSGs2iEX4_DlY-eHGovrNO-mft6FoeiG4grrMJ2F5Ksei4lfpJSpYhL97L2rfV88hAb7tEe2Wt8n3F_XEXm9uX4Z35b3j5O78eV9WQum5yWCQZAICBpZY6QGJqpaGqukrXjLW89QqYoZ33gwIBqoGiUoSG5A1hz4iJys-s5i-Fxgmrtpl2rsez9gWCSnBVdS8xwYkdN_SVB5OLMgRUaP_qAfYRGHvIezWZ5R-SsZoiuojiGliK2bxawpfjugbqneZfVuqd6t1efI8bqvT1lVG7PeLv3mGBMMmFnOP1xxHSL-PksuqLKa_wCbSYn6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919486181</pqid></control><display><type>article</type><title>Covariance Estimation in Decomposable Gaussian Graphical Models</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wiesel, A. ; Eldar, Y.C. ; Hero, A.O.</creator><creatorcontrib>Wiesel, A. ; Eldar, Y.C. ; Hero, A.O.</creatorcontrib><description>Graphical models are a framework for representing and exploiting prior conditional independence structures within distributions using graphs. In the Gaussian case, these models are directly related to the sparsity of the inverse covariance (concentration) matrix and allow for improved covariance estimation with lower computational complexity. We consider concentration estimation with the mean-squared error (MSE) as the objective, in a special type of model known as decomposable. This model includes, for example, the well known banded structure and other cases encountered in practice. Our first contribution is the derivation and analysis of the minimum variance unbiased estimator (MVUE) in decomposable graphical models. We provide a simple closed form solution to the MVUE and compare it with the classical maximum likelihood estimator (MLE) in terms of performance and complexity. Next, we extend the celebrated Stein's unbiased risk estimate (SURE) to graphical models. Using SURE, we prove that the MSE of the MVUE is always smaller or equal to that of the biased MLE, and that the MVUE itself is dominated by other approaches. In addition, we propose the use of SURE as a constructive mechanism for deriving new covariance estimators. Similarly to the classical MLE, all of our proposed estimators have simple closed form solutions but result in a significant reduction in MSE.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2009.2037350</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Ambient intelligence ; Applied sciences ; Array signal processing ; Closed-form solution ; Complexity ; Computational complexity ; Covariance ; Covariance estimation ; Covariance matrix ; Decomposition ; Estimators ; Exact sciences and technology ; Exact solutions ; Gaussian ; Gaussian distribution ; Graphical models ; Information, signal and communications theory ; Markov analysis ; Mathematical analysis ; Mathematical models ; Maximum likelihood estimation ; minimum variance unbiased estimation ; Miscellaneous ; Parameter estimation ; Signal processing ; Signal processing algorithms ; Studies ; Telecommunications and information theory</subject><ispartof>IEEE transactions on signal processing, 2010-03, Vol.58 (3), p.1482-1492</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-e18e15e1e17e2d857124bc589659b3f3fa2e66b28ada1814d1bd640153815c313</citedby><cites>FETCH-LOGICAL-c427t-e18e15e1e17e2d857124bc589659b3f3fa2e66b28ada1814d1bd640153815c313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5340697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22421284$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wiesel, A.</creatorcontrib><creatorcontrib>Eldar, Y.C.</creatorcontrib><creatorcontrib>Hero, A.O.</creatorcontrib><title>Covariance Estimation in Decomposable Gaussian Graphical Models</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Graphical models are a framework for representing and exploiting prior conditional independence structures within distributions using graphs. In the Gaussian case, these models are directly related to the sparsity of the inverse covariance (concentration) matrix and allow for improved covariance estimation with lower computational complexity. We consider concentration estimation with the mean-squared error (MSE) as the objective, in a special type of model known as decomposable. This model includes, for example, the well known banded structure and other cases encountered in practice. Our first contribution is the derivation and analysis of the minimum variance unbiased estimator (MVUE) in decomposable graphical models. We provide a simple closed form solution to the MVUE and compare it with the classical maximum likelihood estimator (MLE) in terms of performance and complexity. Next, we extend the celebrated Stein's unbiased risk estimate (SURE) to graphical models. Using SURE, we prove that the MSE of the MVUE is always smaller or equal to that of the biased MLE, and that the MVUE itself is dominated by other approaches. In addition, we propose the use of SURE as a constructive mechanism for deriving new covariance estimators. Similarly to the classical MLE, all of our proposed estimators have simple closed form solutions but result in a significant reduction in MSE.</description><subject>Ambient intelligence</subject><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Closed-form solution</subject><subject>Complexity</subject><subject>Computational complexity</subject><subject>Covariance</subject><subject>Covariance estimation</subject><subject>Covariance matrix</subject><subject>Decomposition</subject><subject>Estimators</subject><subject>Exact sciences and technology</subject><subject>Exact solutions</subject><subject>Gaussian</subject><subject>Gaussian distribution</subject><subject>Graphical models</subject><subject>Information, signal and communications theory</subject><subject>Markov analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimation</subject><subject>minimum variance unbiased estimation</subject><subject>Miscellaneous</subject><subject>Parameter estimation</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoqNW74GURRC-rmXznJFK1CoqCCt5CdncWV7abmrSC_96UFg8evGQCed6ZzEPIAdAzAGrPX56fzhilNh9cc0k3yA5YASUVWm3mO5W8lEa_bZPdlD4oBSGs2iEX4_DlY-eHGovrNO-mft6FoeiG4grrMJ2F5Ksei4lfpJSpYhL97L2rfV88hAb7tEe2Wt8n3F_XEXm9uX4Z35b3j5O78eV9WQum5yWCQZAICBpZY6QGJqpaGqukrXjLW89QqYoZ33gwIBqoGiUoSG5A1hz4iJys-s5i-Fxgmrtpl2rsez9gWCSnBVdS8xwYkdN_SVB5OLMgRUaP_qAfYRGHvIezWZ5R-SsZoiuojiGliK2bxawpfjugbqneZfVuqd6t1efI8bqvT1lVG7PeLv3mGBMMmFnOP1xxHSL-PksuqLKa_wCbSYn6</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Wiesel, A.</creator><creator>Eldar, Y.C.</creator><creator>Hero, A.O.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100301</creationdate><title>Covariance Estimation in Decomposable Gaussian Graphical Models</title><author>Wiesel, A. ; Eldar, Y.C. ; Hero, A.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-e18e15e1e17e2d857124bc589659b3f3fa2e66b28ada1814d1bd640153815c313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Ambient intelligence</topic><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Closed-form solution</topic><topic>Complexity</topic><topic>Computational complexity</topic><topic>Covariance</topic><topic>Covariance estimation</topic><topic>Covariance matrix</topic><topic>Decomposition</topic><topic>Estimators</topic><topic>Exact sciences and technology</topic><topic>Exact solutions</topic><topic>Gaussian</topic><topic>Gaussian distribution</topic><topic>Graphical models</topic><topic>Information, signal and communications theory</topic><topic>Markov analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimation</topic><topic>minimum variance unbiased estimation</topic><topic>Miscellaneous</topic><topic>Parameter estimation</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiesel, A.</creatorcontrib><creatorcontrib>Eldar, Y.C.</creatorcontrib><creatorcontrib>Hero, A.O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiesel, A.</au><au>Eldar, Y.C.</au><au>Hero, A.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Covariance Estimation in Decomposable Gaussian Graphical Models</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2010-03-01</date><risdate>2010</risdate><volume>58</volume><issue>3</issue><spage>1482</spage><epage>1492</epage><pages>1482-1492</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Graphical models are a framework for representing and exploiting prior conditional independence structures within distributions using graphs. In the Gaussian case, these models are directly related to the sparsity of the inverse covariance (concentration) matrix and allow for improved covariance estimation with lower computational complexity. We consider concentration estimation with the mean-squared error (MSE) as the objective, in a special type of model known as decomposable. This model includes, for example, the well known banded structure and other cases encountered in practice. Our first contribution is the derivation and analysis of the minimum variance unbiased estimator (MVUE) in decomposable graphical models. We provide a simple closed form solution to the MVUE and compare it with the classical maximum likelihood estimator (MLE) in terms of performance and complexity. Next, we extend the celebrated Stein's unbiased risk estimate (SURE) to graphical models. Using SURE, we prove that the MSE of the MVUE is always smaller or equal to that of the biased MLE, and that the MVUE itself is dominated by other approaches. In addition, we propose the use of SURE as a constructive mechanism for deriving new covariance estimators. Similarly to the classical MLE, all of our proposed estimators have simple closed form solutions but result in a significant reduction in MSE.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2009.2037350</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2010-03, Vol.58 (3), p.1482-1492
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_5340697
source IEEE Electronic Library (IEL) Journals
subjects Ambient intelligence
Applied sciences
Array signal processing
Closed-form solution
Complexity
Computational complexity
Covariance
Covariance estimation
Covariance matrix
Decomposition
Estimators
Exact sciences and technology
Exact solutions
Gaussian
Gaussian distribution
Graphical models
Information, signal and communications theory
Markov analysis
Mathematical analysis
Mathematical models
Maximum likelihood estimation
minimum variance unbiased estimation
Miscellaneous
Parameter estimation
Signal processing
Signal processing algorithms
Studies
Telecommunications and information theory
title Covariance Estimation in Decomposable Gaussian Graphical Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Covariance%20Estimation%20in%20Decomposable%20Gaussian%20Graphical%20Models&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Wiesel,%20A.&rft.date=2010-03-01&rft.volume=58&rft.issue=3&rft.spage=1482&rft.epage=1492&rft.pages=1482-1492&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2009.2037350&rft_dat=%3Cproquest_ieee_%3E1671229154%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-e18e15e1e17e2d857124bc589659b3f3fa2e66b28ada1814d1bd640153815c313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=919486181&rft_id=info:pmid/&rft_ieee_id=5340697&rfr_iscdi=true