Loading…
Experimental study on dynamic reactionless motions with DLR's humanoid robot Justin
The capabilities of DLR's multi-DOF humanoid robot Justin are extended with the help of a dynamic torque control component for base reaction minimization. Since the mobile base of the robot comprises springs, reactions induced by arm/torso motions lead to vibrations and deteriorate the performa...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The capabilities of DLR's multi-DOF humanoid robot Justin are extended with the help of a dynamic torque control component for base reaction minimization. Since the mobile base of the robot comprises springs, reactions induced by arm/torso motions lead to vibrations and deteriorate the performance. The control component is derived from the equation of motion of the robot, represented as an underactuated system, and partitioned into a ¿driven¿ subsystem (one of the arms), and a ¿compensating¿ subsystem (the other arm, with or w/o torso contribution). The control component is then embedded into the existing sophisticated controller structure of Justin, as a feedforward component, with additional control signals from an augmented PD feedback controller. It was possible to obtain satisfactory performance with a very ¿soft¿ compensatory subsystem. The experimental results confirmed the potential of this model-based approach for use in a complex multi-DOF system. As far as we know, this is the first time that a dynamic-coupling compensating controller is applied to a real system of such complexity, utilizing thereby a torque control interface. |
---|---|
ISSN: | 2153-0858 2153-0866 |
DOI: | 10.1109/IROS.2009.5354528 |