Loading…
Uniform Asymptotic Evaluation of Surface Integrals With Polygonal Integration Domains in Terms of UTD Transition Functions
The field scattered by a scattering body or by an aperture in the free space (or in an unbounded homogenous medium) can be described in terms of a double integral. In this paper we show how a canonical integral on a polygonal domain, with a constant amplitude function and a quadratic phase variation...
Saved in:
Published in: | IEEE transactions on antennas and propagation 2010-04, Vol.58 (4), p.1155-1163 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The field scattered by a scattering body or by an aperture in the free space (or in an unbounded homogenous medium) can be described in terms of a double integral. In this paper we show how a canonical integral on a polygonal domain, with a constant amplitude function and a quadratic phase variation, can be exactly expressed in terms of special functions, namely Fresnel integrals and generalized Fresnel integrals. This exact reduction represents a paradigm for deriving a new asymptotic evaluation for a more general integral. This new asymptotic uniform integral evaluation is expressed in the format of the uniform geometrical theory of diffraction which is convenient for numerical computations. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2010.2041171 |