Loading…
A Kernel-Based Nonparametric Regression Method for Clutter Removal in Infrared Small-Target Detection Applications
Small-target detection in infrared imagery with a complex background is always an important task in remote-sensing fields. Complex clutter background usually results in serious false alarm in target detection for low contrast of infrared imagery. In this letter, a kernel-based nonparametric regressi...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2010-07, Vol.7 (3), p.469-473 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Small-target detection in infrared imagery with a complex background is always an important task in remote-sensing fields. Complex clutter background usually results in serious false alarm in target detection for low contrast of infrared imagery. In this letter, a kernel-based nonparametric regression method is proposed for background prediction and clutter removal, furthermore applied in target detection. First, a linear mixture model is used to represent each pixel of the observed infrared imagery. Second, adaptive detection is performed on local regions in the infrared image by means of kernel-based nonparametric regression and two-parameter constant false alarm rate (CFAR) detector. Kernel regression, which is one of the nonparametric regression approaches, is adopted to estimate complex clutter background. Then, CFAR detection is performed on "pure" target-like region after estimation and removal of clutter background. Experimental results prove that the proposed algorithm is effective and adaptable to small-target detection under a complex background. |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2009.2039192 |