Loading…
Simultaneous on-line monitoring and wave-net learning
Current on-line wave-net learning algorithm adapts the primary identified process model with the new changes in time varying processes without a consideration of abnormal situations in the process operation. Therefore, if a disturbance occurs and makes changes in the process, current on-line learnin...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c144t-feea5872a8bce39f0301a3c5523b9bdf1d8c52d3b5765869aff2f4f365f20b5c3 |
---|---|
cites | |
container_end_page | 691 |
container_issue | |
container_start_page | 686 |
container_title | |
container_volume | |
creator | Jafari, Masoumeh Safavi, Ali Akbar |
description | Current on-line wave-net learning algorithm adapts the primary identified process model with the new changes in time varying processes without a consideration of abnormal situations in the process operation. Therefore, if a disturbance occurs and makes changes in the process, current on-line learning updates the primary model to an unsuitable model. This paper proposes a procedure that first determines normal variations of time-varying processes from abnormal variations incorporating an adaptive dynamic principal component analysis (Adaptive DPCA) and updates the model only based on normal variations. A double continuously stirred tank reactors (CSTR) case study is invoked to show the effectiveness of the proposed approach. The results show the effectiveness of the method. |
doi_str_mv | 10.1109/IRANIANCEE.2010.5506984 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5506984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5506984</ieee_id><sourcerecordid>5506984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c144t-feea5872a8bce39f0301a3c5523b9bdf1d8c52d3b5765869aff2f4f365f20b5c3</originalsourceid><addsrcrecordid>eNo1j8tKw0AYhUdUsNY8gQvzAqlz--eyDCHWQKngZV0myT8ykkwkSRXf3oD1bD7OtzhwCLljdMMYtffVc76v8n1RlhtOFwlAlTXyjFwzyaVUWjF1ThKrzX-n9IKsOFMy0xTkFUmm6YMukcC1UCsCL6E_drOLOByndIhZFyKm_RDDPIwhvqcutum3-8Is4px26Ma42Bty6V03YXLimrw9lK_FY7Z72lZFvssaJuWceUQHRnNn6gaF9VRQ5kQDwEVt69az1jTAW1GDVmCUdd5zL71Q4DmtoRFrcvu3GxDx8DmG3o0_h9Nr8Qsyukqb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Simultaneous on-line monitoring and wave-net learning</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jafari, Masoumeh ; Safavi, Ali Akbar</creator><creatorcontrib>Jafari, Masoumeh ; Safavi, Ali Akbar</creatorcontrib><description>Current on-line wave-net learning algorithm adapts the primary identified process model with the new changes in time varying processes without a consideration of abnormal situations in the process operation. Therefore, if a disturbance occurs and makes changes in the process, current on-line learning updates the primary model to an unsuitable model. This paper proposes a procedure that first determines normal variations of time-varying processes from abnormal variations incorporating an adaptive dynamic principal component analysis (Adaptive DPCA) and updates the model only based on normal variations. A double continuously stirred tank reactors (CSTR) case study is invoked to show the effectiveness of the proposed approach. The results show the effectiveness of the method.</description><identifier>ISSN: 2164-7054</identifier><identifier>ISBN: 9781424467600</identifier><identifier>ISBN: 1424467608</identifier><identifier>EISBN: 1424467616</identifier><identifier>EISBN: 9781424467617</identifier><identifier>DOI: 10.1109/IRANIANCEE.2010.5506984</identifier><language>eng</language><publisher>IEEE</publisher><subject>component ; Computerized monitoring ; Continuous-stirred tank reactor ; CSTR ; DPCA ; Inductors ; Multiresolution analysis ; Neural networks ; On-line learning ; On-line monitoring ; Power engineering and energy ; Power engineering computing ; Principal component analysis ; Statistical analysis ; Wave-Nets ; Wavelet analysis</subject><ispartof>2010 18th Iranian Conference on Electrical Engineering, 2010, p.686-691</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c144t-feea5872a8bce39f0301a3c5523b9bdf1d8c52d3b5765869aff2f4f365f20b5c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5506984$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5506984$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jafari, Masoumeh</creatorcontrib><creatorcontrib>Safavi, Ali Akbar</creatorcontrib><title>Simultaneous on-line monitoring and wave-net learning</title><title>2010 18th Iranian Conference on Electrical Engineering</title><addtitle>IRANIANCEE</addtitle><description>Current on-line wave-net learning algorithm adapts the primary identified process model with the new changes in time varying processes without a consideration of abnormal situations in the process operation. Therefore, if a disturbance occurs and makes changes in the process, current on-line learning updates the primary model to an unsuitable model. This paper proposes a procedure that first determines normal variations of time-varying processes from abnormal variations incorporating an adaptive dynamic principal component analysis (Adaptive DPCA) and updates the model only based on normal variations. A double continuously stirred tank reactors (CSTR) case study is invoked to show the effectiveness of the proposed approach. The results show the effectiveness of the method.</description><subject>component</subject><subject>Computerized monitoring</subject><subject>Continuous-stirred tank reactor</subject><subject>CSTR</subject><subject>DPCA</subject><subject>Inductors</subject><subject>Multiresolution analysis</subject><subject>Neural networks</subject><subject>On-line learning</subject><subject>On-line monitoring</subject><subject>Power engineering and energy</subject><subject>Power engineering computing</subject><subject>Principal component analysis</subject><subject>Statistical analysis</subject><subject>Wave-Nets</subject><subject>Wavelet analysis</subject><issn>2164-7054</issn><isbn>9781424467600</isbn><isbn>1424467608</isbn><isbn>1424467616</isbn><isbn>9781424467617</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j8tKw0AYhUdUsNY8gQvzAqlz--eyDCHWQKngZV0myT8ykkwkSRXf3oD1bD7OtzhwCLljdMMYtffVc76v8n1RlhtOFwlAlTXyjFwzyaVUWjF1ThKrzX-n9IKsOFMy0xTkFUmm6YMukcC1UCsCL6E_drOLOByndIhZFyKm_RDDPIwhvqcutum3-8Is4px26Ma42Bty6V03YXLimrw9lK_FY7Z72lZFvssaJuWceUQHRnNn6gaF9VRQ5kQDwEVt69az1jTAW1GDVmCUdd5zL71Q4DmtoRFrcvu3GxDx8DmG3o0_h9Nr8Qsyukqb</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Jafari, Masoumeh</creator><creator>Safavi, Ali Akbar</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Simultaneous on-line monitoring and wave-net learning</title><author>Jafari, Masoumeh ; Safavi, Ali Akbar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c144t-feea5872a8bce39f0301a3c5523b9bdf1d8c52d3b5765869aff2f4f365f20b5c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>component</topic><topic>Computerized monitoring</topic><topic>Continuous-stirred tank reactor</topic><topic>CSTR</topic><topic>DPCA</topic><topic>Inductors</topic><topic>Multiresolution analysis</topic><topic>Neural networks</topic><topic>On-line learning</topic><topic>On-line monitoring</topic><topic>Power engineering and energy</topic><topic>Power engineering computing</topic><topic>Principal component analysis</topic><topic>Statistical analysis</topic><topic>Wave-Nets</topic><topic>Wavelet analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Jafari, Masoumeh</creatorcontrib><creatorcontrib>Safavi, Ali Akbar</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jafari, Masoumeh</au><au>Safavi, Ali Akbar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Simultaneous on-line monitoring and wave-net learning</atitle><btitle>2010 18th Iranian Conference on Electrical Engineering</btitle><stitle>IRANIANCEE</stitle><date>2010-05</date><risdate>2010</risdate><spage>686</spage><epage>691</epage><pages>686-691</pages><issn>2164-7054</issn><isbn>9781424467600</isbn><isbn>1424467608</isbn><eisbn>1424467616</eisbn><eisbn>9781424467617</eisbn><abstract>Current on-line wave-net learning algorithm adapts the primary identified process model with the new changes in time varying processes without a consideration of abnormal situations in the process operation. Therefore, if a disturbance occurs and makes changes in the process, current on-line learning updates the primary model to an unsuitable model. This paper proposes a procedure that first determines normal variations of time-varying processes from abnormal variations incorporating an adaptive dynamic principal component analysis (Adaptive DPCA) and updates the model only based on normal variations. A double continuously stirred tank reactors (CSTR) case study is invoked to show the effectiveness of the proposed approach. The results show the effectiveness of the method.</abstract><pub>IEEE</pub><doi>10.1109/IRANIANCEE.2010.5506984</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2164-7054 |
ispartof | 2010 18th Iranian Conference on Electrical Engineering, 2010, p.686-691 |
issn | 2164-7054 |
language | eng |
recordid | cdi_ieee_primary_5506984 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | component Computerized monitoring Continuous-stirred tank reactor CSTR DPCA Inductors Multiresolution analysis Neural networks On-line learning On-line monitoring Power engineering and energy Power engineering computing Principal component analysis Statistical analysis Wave-Nets Wavelet analysis |
title | Simultaneous on-line monitoring and wave-net learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Simultaneous%20on-line%20monitoring%20and%20wave-net%20learning&rft.btitle=2010%2018th%20Iranian%20Conference%20on%20Electrical%20Engineering&rft.au=Jafari,%20Masoumeh&rft.date=2010-05&rft.spage=686&rft.epage=691&rft.pages=686-691&rft.issn=2164-7054&rft.isbn=9781424467600&rft.isbn_list=1424467608&rft_id=info:doi/10.1109/IRANIANCEE.2010.5506984&rft.eisbn=1424467616&rft.eisbn_list=9781424467617&rft_dat=%3Cieee_6IE%3E5506984%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c144t-feea5872a8bce39f0301a3c5523b9bdf1d8c52d3b5765869aff2f4f365f20b5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5506984&rfr_iscdi=true |