Loading…
High-performance VLSI architecture for the Viterbi algorithm
The Viterbi (1967) algorithm (VA) is known to be an efficient method for the realization of maximum-likelihood (ML) decoding of convolutional codes. The VA is characterized by a graph, called a trellis, which defines the transitions between states. To define an area efficient architecture for the VA...
Saved in:
Published in: | IEEE transactions on communications 1997-02, Vol.45 (2), p.168-176 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Viterbi (1967) algorithm (VA) is known to be an efficient method for the realization of maximum-likelihood (ML) decoding of convolutional codes. The VA is characterized by a graph, called a trellis, which defines the transitions between states. To define an area efficient architecture for the VA is equivalent to obtaining an efficient mapping of the trellis. We present a methodology that permits the efficient hardware mapping of the VA onto a processor network of arbitrary size. This formal model is employed for the partitioning of the computations among an arbitrary number of processors in such a way that the data are recirculated, optimizing the use of the PEs and the communications. Therefore, the algorithm is mapped onto a column of processing elements and an optimal design solution is obtained for a particular set of area and/or speed constraints. Furthermore, the management of the surviving path memory for its mapping and distribution among the processors was studied. As a result, we obtain a regular and modular design appropriate for its VLSI implementation in which the only necessary communications between processors are the data recirculations between stages. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/26.554365 |