Loading…
Optimizing triangle strips for fast rendering
Almost all scientific visualization involving surfaces is currently done via triangles. The speed at which such triangulated surfaces can be displayed is crucial to interactive visualization and is bounded by the rate at which triangulated data can be sent to the graphics subsystem for rendering. Pa...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Almost all scientific visualization involving surfaces is currently done via triangles. The speed at which such triangulated surfaces can be displayed is crucial to interactive visualization and is bounded by the rate at which triangulated data can be sent to the graphics subsystem for rendering. Partitioning polygonal models into triangle strips can significantly reduce rendering times over transmitting each triangle individually. We present new and efficient algorithms for constructing triangle strips from partially triangulated models, and experimental results showing these strips are on average 15% better than those from previous codes. Further, we study the impact of larger buffer sizes and various queuing disciplines on the effectiveness of triangle strips. |
---|---|
DOI: | 10.1109/VISUAL.1996.568125 |