Loading…
Topic-weak-correlated Latent Dirichlet allocation
Latent Dirichlet allocation (LDA) has been widely used for analyzing large text corpora. In this paper we propose the topic-weak-correlated LDA (TWC-LDA) for topic modeling, which constrains different topics to be weak-correlated. This is technically achieved by placing a special prior over the topi...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Latent Dirichlet allocation (LDA) has been widely used for analyzing large text corpora. In this paper we propose the topic-weak-correlated LDA (TWC-LDA) for topic modeling, which constrains different topics to be weak-correlated. This is technically achieved by placing a special prior over the topic-word distributions. Reducing the overlapping between the topic-word distributions makes the learned topics more interpretable in the sense that each topic word-distribution can be clearly associated to a distinctive semantic meaning. Experimental results on both synthetic and real-world corpus show the superiority of the TWC-LDA over the basic LDA for semantically meaningful topic discovery and document classification. |
---|---|
DOI: | 10.1109/ISCSLP.2010.5684906 |