Loading…

FDTD Modeling of Dispersive Bianisotropic Media Using Z-Transform Method

The finite-difference time-domain (FDTD) technique for simulating electromagnetic wave interaction with a dispersive chiral medium is extended to include the simulation of dispersive bianisotropic media. Due to anisotropy and frequency dispersion of such media, the constitutive parameters are repres...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2011-06, Vol.59 (6), p.2268-2279
Main Authors: Nayyeri, V, Soleimani, M, Rashed Mohassel, Jalil, Dehmollaian, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The finite-difference time-domain (FDTD) technique for simulating electromagnetic wave interaction with a dispersive chiral medium is extended to include the simulation of dispersive bianisotropic media. Due to anisotropy and frequency dispersion of such media, the constitutive parameters are represented by frequency-dependent tensors. The FDTD is formulated using the Z-transform method, a conventional approach for applying FDTD in frequency-dispersive media. Omega medium is considered as an example of bianisotropic media, the frequency-dependent tensors of which are based on analytical models. The extended FDTD method is used to determine the reflection and transmission coefficients of co- and cross-polarized electromagnetic waves from omega slabs, illuminated by normally incident plane waves. Three cases are simulated: 1) a slab of uniaxial omega medium with its optical axis parallel to the propagation vector; 2) a slab of rotated uniaxial omega medium with its optical axis not parallel to the propagation vector; and 3) a slab of biaxial omega medium. The results are validated by means of comparisons with analytical solutions.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2011.2143677