Loading…
Reliable Hardware Architectures for the Third-Round SHA-3 Finalist Grostl Benchmarked on FPGA Platform
The third round of competition for the SHA-3 candidates is ongoing to select the winning function in 2012. Although much attention has been devoted to the performance and security of these candidates, the approaches for increasing their reliability have not been presented to date. In this paper, for...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The third round of competition for the SHA-3 candidates is ongoing to select the winning function in 2012. Although much attention has been devoted to the performance and security of these candidates, the approaches for increasing their reliability have not been presented to date. In this paper, for the first time, we propose a high-performance scheme for fault detection of the SHA-3 round-three candidate Grostl which is inspired by the Advanced Encryption Standard (AES). We propose a low-overhead fault detection scheme by presenting closed formulations for the predicted signatures of different transformations of this SHA-3 third-round finalist. These signatures are derived to achieve low overhead and include one or multi-bit parities and byte/word-wide predicted signatures. The proposed reliable hardware architectures for Grostl are implemented on Xilinx Virtex-6 FPGA family to benchmark their hardware and timing characteristics. The results of our evaluations show high error coverage and acceptable overhead for the proposed scheme. |
---|---|
ISSN: | 1550-5774 2377-7966 |
DOI: | 10.1109/DFT.2011.60 |