Loading…
A Privacy Reinforcement Approach against De-identified Dataset
Protection of individual privacy has been a key issue for the corresponding data dissemination. Nowadays powerful search utilities increase the re-identification risk by easier information collection as well as validation than before. Despite there usually performs certain de-identified process, att...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Protection of individual privacy has been a key issue for the corresponding data dissemination. Nowadays powerful search utilities increase the re-identification risk by easier information collection as well as validation than before. Despite there usually performs certain de-identified process, attackers may recognize someone from released dataset with which attacker-owned information is matched. In this paper, we propose an approach to mitigate the identity disclosure problem by generating plurals in a given dataset. The approach leverages decision tree to help selection of quasi-identifier and several masking techniques can be employed for privacy reinforcement. In addition to different privacy metrics applicability, the approach can achieve better trade-off between data integrity and privacy protection through flexible data masking. |
---|---|
DOI: | 10.1109/ICEBE.2011.25 |