Loading…

A Privacy Reinforcement Approach against De-identified Dataset

Protection of individual privacy has been a key issue for the corresponding data dissemination. Nowadays powerful search utilities increase the re-identification risk by easier information collection as well as validation than before. Despite there usually performs certain de-identified process, att...

Full description

Saved in:
Bibliographic Details
Main Authors: Ci-Wei Lan, Yi-Hui Chen, Grandison, T., Huang, A. F. M., Jen-Yao Chung, Li-Feng Tseng
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 375
container_issue
container_start_page 370
container_title
container_volume
creator Ci-Wei Lan
Yi-Hui Chen
Grandison, T.
Huang, A. F. M.
Jen-Yao Chung
Li-Feng Tseng
description Protection of individual privacy has been a key issue for the corresponding data dissemination. Nowadays powerful search utilities increase the re-identification risk by easier information collection as well as validation than before. Despite there usually performs certain de-identified process, attackers may recognize someone from released dataset with which attacker-owned information is matched. In this paper, we propose an approach to mitigate the identity disclosure problem by generating plurals in a given dataset. The approach leverages decision tree to help selection of quasi-identifier and several masking techniques can be employed for privacy reinforcement. In addition to different privacy metrics applicability, the approach can achieve better trade-off between data integrity and privacy protection through flexible data masking.
doi_str_mv 10.1109/ICEBE.2011.25
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6104644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6104644</ieee_id><sourcerecordid>6104644</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a6c92d6ab5355f33ca03ef7febd1da6771670f05966acff64c87e12d8cea03b33</originalsourceid><addsrcrecordid>eNotjsFKxDAURSMiKGOXrtzkB1qTJnlpNkLtdHRgQJHZD6_JiwacTmmLMH9vUVeXy7kcLmN3UhRSCvewbdqntiiFlEVpLljmbCUsOKONrNzlb5faWCu10PaaZdOUOiFNpUoQcMMea_42pm_0Z_5OqY-n0dOR-pnXwzCe0H9y_MDUTzNfU57CQlJMFPgaZ5xovmVXEb8myv5zxfabdt-85LvX521T7_LkxJwjeFcGwM4oY6JSHoWiaCN1QQaE5RxYEYVxAOhjBO0rS7IMladl2Sm1Yvd_2kREh2FMRxzPB5BCg9bqB7uNSc8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Privacy Reinforcement Approach against De-identified Dataset</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ci-Wei Lan ; Yi-Hui Chen ; Grandison, T. ; Huang, A. F. M. ; Jen-Yao Chung ; Li-Feng Tseng</creator><creatorcontrib>Ci-Wei Lan ; Yi-Hui Chen ; Grandison, T. ; Huang, A. F. M. ; Jen-Yao Chung ; Li-Feng Tseng</creatorcontrib><description>Protection of individual privacy has been a key issue for the corresponding data dissemination. Nowadays powerful search utilities increase the re-identification risk by easier information collection as well as validation than before. Despite there usually performs certain de-identified process, attackers may recognize someone from released dataset with which attacker-owned information is matched. In this paper, we propose an approach to mitigate the identity disclosure problem by generating plurals in a given dataset. The approach leverages decision tree to help selection of quasi-identifier and several masking techniques can be employed for privacy reinforcement. In addition to different privacy metrics applicability, the approach can achieve better trade-off between data integrity and privacy protection through flexible data masking.</description><identifier>ISBN: 9781457714047</identifier><identifier>ISBN: 1457714043</identifier><identifier>EISBN: 9780769545189</identifier><identifier>EISBN: 0769545181</identifier><identifier>DOI: 10.1109/ICEBE.2011.25</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conferences ; data mask ; Decision support systems ; microdata protection ; Privacy ; quasi-identifier</subject><ispartof>2011 IEEE 8th International Conference on e-Business Engineering, 2011, p.370-375</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6104644$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6104644$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ci-Wei Lan</creatorcontrib><creatorcontrib>Yi-Hui Chen</creatorcontrib><creatorcontrib>Grandison, T.</creatorcontrib><creatorcontrib>Huang, A. F. M.</creatorcontrib><creatorcontrib>Jen-Yao Chung</creatorcontrib><creatorcontrib>Li-Feng Tseng</creatorcontrib><title>A Privacy Reinforcement Approach against De-identified Dataset</title><title>2011 IEEE 8th International Conference on e-Business Engineering</title><addtitle>icebe</addtitle><description>Protection of individual privacy has been a key issue for the corresponding data dissemination. Nowadays powerful search utilities increase the re-identification risk by easier information collection as well as validation than before. Despite there usually performs certain de-identified process, attackers may recognize someone from released dataset with which attacker-owned information is matched. In this paper, we propose an approach to mitigate the identity disclosure problem by generating plurals in a given dataset. The approach leverages decision tree to help selection of quasi-identifier and several masking techniques can be employed for privacy reinforcement. In addition to different privacy metrics applicability, the approach can achieve better trade-off between data integrity and privacy protection through flexible data masking.</description><subject>Conferences</subject><subject>data mask</subject><subject>Decision support systems</subject><subject>microdata protection</subject><subject>Privacy</subject><subject>quasi-identifier</subject><isbn>9781457714047</isbn><isbn>1457714043</isbn><isbn>9780769545189</isbn><isbn>0769545181</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjsFKxDAURSMiKGOXrtzkB1qTJnlpNkLtdHRgQJHZD6_JiwacTmmLMH9vUVeXy7kcLmN3UhRSCvewbdqntiiFlEVpLljmbCUsOKONrNzlb5faWCu10PaaZdOUOiFNpUoQcMMea_42pm_0Z_5OqY-n0dOR-pnXwzCe0H9y_MDUTzNfU57CQlJMFPgaZ5xovmVXEb8myv5zxfabdt-85LvX521T7_LkxJwjeFcGwM4oY6JSHoWiaCN1QQaE5RxYEYVxAOhjBO0rS7IMladl2Sm1Yvd_2kREh2FMRxzPB5BCg9bqB7uNSc8</recordid><startdate>201110</startdate><enddate>201110</enddate><creator>Ci-Wei Lan</creator><creator>Yi-Hui Chen</creator><creator>Grandison, T.</creator><creator>Huang, A. F. M.</creator><creator>Jen-Yao Chung</creator><creator>Li-Feng Tseng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201110</creationdate><title>A Privacy Reinforcement Approach against De-identified Dataset</title><author>Ci-Wei Lan ; Yi-Hui Chen ; Grandison, T. ; Huang, A. F. M. ; Jen-Yao Chung ; Li-Feng Tseng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a6c92d6ab5355f33ca03ef7febd1da6771670f05966acff64c87e12d8cea03b33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Conferences</topic><topic>data mask</topic><topic>Decision support systems</topic><topic>microdata protection</topic><topic>Privacy</topic><topic>quasi-identifier</topic><toplevel>online_resources</toplevel><creatorcontrib>Ci-Wei Lan</creatorcontrib><creatorcontrib>Yi-Hui Chen</creatorcontrib><creatorcontrib>Grandison, T.</creatorcontrib><creatorcontrib>Huang, A. F. M.</creatorcontrib><creatorcontrib>Jen-Yao Chung</creatorcontrib><creatorcontrib>Li-Feng Tseng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ci-Wei Lan</au><au>Yi-Hui Chen</au><au>Grandison, T.</au><au>Huang, A. F. M.</au><au>Jen-Yao Chung</au><au>Li-Feng Tseng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Privacy Reinforcement Approach against De-identified Dataset</atitle><btitle>2011 IEEE 8th International Conference on e-Business Engineering</btitle><stitle>icebe</stitle><date>2011-10</date><risdate>2011</risdate><spage>370</spage><epage>375</epage><pages>370-375</pages><isbn>9781457714047</isbn><isbn>1457714043</isbn><eisbn>9780769545189</eisbn><eisbn>0769545181</eisbn><abstract>Protection of individual privacy has been a key issue for the corresponding data dissemination. Nowadays powerful search utilities increase the re-identification risk by easier information collection as well as validation than before. Despite there usually performs certain de-identified process, attackers may recognize someone from released dataset with which attacker-owned information is matched. In this paper, we propose an approach to mitigate the identity disclosure problem by generating plurals in a given dataset. The approach leverages decision tree to help selection of quasi-identifier and several masking techniques can be employed for privacy reinforcement. In addition to different privacy metrics applicability, the approach can achieve better trade-off between data integrity and privacy protection through flexible data masking.</abstract><pub>IEEE</pub><doi>10.1109/ICEBE.2011.25</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781457714047
ispartof 2011 IEEE 8th International Conference on e-Business Engineering, 2011, p.370-375
issn
language eng
recordid cdi_ieee_primary_6104644
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Conferences
data mask
Decision support systems
microdata protection
Privacy
quasi-identifier
title A Privacy Reinforcement Approach against De-identified Dataset
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A43%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Privacy%20Reinforcement%20Approach%20against%20De-identified%20Dataset&rft.btitle=2011%20IEEE%208th%20International%20Conference%20on%20e-Business%20Engineering&rft.au=Ci-Wei%20Lan&rft.date=2011-10&rft.spage=370&rft.epage=375&rft.pages=370-375&rft.isbn=9781457714047&rft.isbn_list=1457714043&rft_id=info:doi/10.1109/ICEBE.2011.25&rft.eisbn=9780769545189&rft.eisbn_list=0769545181&rft_dat=%3Cieee_6IE%3E6104644%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-a6c92d6ab5355f33ca03ef7febd1da6771670f05966acff64c87e12d8cea03b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6104644&rfr_iscdi=true