Loading…

Evaluating the viability of process replication reliability for exascale systems

As high-end computing machines continue to grow in size, issues such as fault tolerance and reliability limit application scalability. Current techniques to ensure progress across faults, like checkpoint-restart, are increasingly problematic at these scales due to excessive overheads predicted to mo...

Full description

Saved in:
Bibliographic Details
Main Authors: Ferreira, Kurt, Stearley, Jon, Laros, James H., Oldfield, Ron, Pedretti, Kevin, Brightwell, Ron, Riesen, Rolf, Bridges, Patrick G., Arnold, Dorian
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As high-end computing machines continue to grow in size, issues such as fault tolerance and reliability limit application scalability. Current techniques to ensure progress across faults, like checkpoint-restart, are increasingly problematic at these scales due to excessive overheads predicted to more than double an application's time to solution. Replicated computing techniques, particularly state machine replication, long used in distributed and mission critical systems, have been suggested as an alternative to checkpoint-restart. In this paper, we evaluate the viability of using state machine replication as the primary fault tolerance mechanism for upcoming exascale systems. We use a combination of modeling, empirical analysis, and simulation to study the costs and benefits of this approach in comparison to checkpoint/restart on a wide range of system parameters. These results, which cover different failure distributions, hardware mean time to failures, and I/O bandwidths, show that state machine replication is a potentially useful technique for meeting the fault tolerance demands of HPC applications on future exascale platforms.
ISSN:2167-4329
2167-4337
DOI:10.1145/2063384.2063443