Loading…
Moving-window propagation model based on an unconditionally stable FDTD method
This work introduces a finite-difference time-domain (FDTD) propagation model based on a moving window algorithm. The FDTD is evaluated by an unconditionally stable (US) method combined with a material independent (MI) perfectly matched layer (PML) formulation. Thus, the time step used in simulation...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c139t-50aa928dc54c77fc13ca1df60fb483be68376523f8695631d210afe4dbce5a8c3 |
---|---|
cites | |
container_end_page | 1182 |
container_issue | |
container_start_page | 1178 |
container_title | |
container_volume | |
creator | Batista, C. G. Goncalves do Rego, Cassio |
description | This work introduces a finite-difference time-domain (FDTD) propagation model based on a moving window algorithm. The FDTD is evaluated by an unconditionally stable (US) method combined with a material independent (MI) perfectly matched layer (PML) formulation. Thus, the time step used in simulation is no longer restricted by the Courant-Friedrich-Levy (CFL) stability condition and the formulation can be efficiently applied to any real propagation scenario without any modification. The US-IPML formulation is tested through an analytic problem. The proposed propagation model is applied to two idealized terrain profiles involving HF and VHF signals. |
doi_str_mv | 10.1109/EuCAP.2012.6206374 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6206374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6206374</ieee_id><sourcerecordid>6206374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c139t-50aa928dc54c77fc13ca1df60fb483be68376523f8695631d210afe4dbce5a8c3</originalsourceid><addsrcrecordid>eNo9kMtKw0AYhUdUsNa-gG7mBRLnnsmypK0K9bKo4K78mUuNJDMhSS19eyMWV4fvO3AWB6FbSlJKSX6_3Bfzt5QRylLFiOKZOEPXVMgsI_loz_-B6o8LNGFUiYRzwa7QrO-_CCE0l0RrNUEvz_G7CrvkUAUbD7jtYgs7GKoYcBOtq3EJvbN4RAh4H0wMtvptoa6PuB-grB1eLTYL3LjhM9obdOmh7t3slFP0vlpuisdk_frwVMzXiaE8HxJJAHKmrZHCZJkfpQFqvSK-FJqXTmmeKcm41yqXilPLKAHvhC2Nk6ANn6K7v93KObdtu6qB7rg9fcF_ANaQUZc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Moving-window propagation model based on an unconditionally stable FDTD method</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Batista, C. G. ; Goncalves do Rego, Cassio</creator><creatorcontrib>Batista, C. G. ; Goncalves do Rego, Cassio</creatorcontrib><description>This work introduces a finite-difference time-domain (FDTD) propagation model based on a moving window algorithm. The FDTD is evaluated by an unconditionally stable (US) method combined with a material independent (MI) perfectly matched layer (PML) formulation. Thus, the time step used in simulation is no longer restricted by the Courant-Friedrich-Levy (CFL) stability condition and the formulation can be efficiently applied to any real propagation scenario without any modification. The US-IPML formulation is tested through an analytic problem. The proposed propagation model is applied to two idealized terrain profiles involving HF and VHF signals.</description><identifier>ISSN: 2164-3342</identifier><identifier>ISBN: 145770918X</identifier><identifier>ISBN: 9781457709180</identifier><identifier>EISBN: 1457709201</identifier><identifier>EISBN: 9781457709203</identifier><identifier>EISBN: 1457709198</identifier><identifier>EISBN: 9781457709197</identifier><identifier>DOI: 10.1109/EuCAP.2012.6206374</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Equations ; Finite difference methods ; Materials ; Mathematical model ; Moment methods ; Time domain analysis</subject><ispartof>2012 6th European Conference on Antennas and Propagation (EUCAP), 2012, p.1178-1182</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c139t-50aa928dc54c77fc13ca1df60fb483be68376523f8695631d210afe4dbce5a8c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6206374$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54554,54919,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6206374$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Batista, C. G.</creatorcontrib><creatorcontrib>Goncalves do Rego, Cassio</creatorcontrib><title>Moving-window propagation model based on an unconditionally stable FDTD method</title><title>2012 6th European Conference on Antennas and Propagation (EUCAP)</title><addtitle>EuCAP</addtitle><description>This work introduces a finite-difference time-domain (FDTD) propagation model based on a moving window algorithm. The FDTD is evaluated by an unconditionally stable (US) method combined with a material independent (MI) perfectly matched layer (PML) formulation. Thus, the time step used in simulation is no longer restricted by the Courant-Friedrich-Levy (CFL) stability condition and the formulation can be efficiently applied to any real propagation scenario without any modification. The US-IPML formulation is tested through an analytic problem. The proposed propagation model is applied to two idealized terrain profiles involving HF and VHF signals.</description><subject>Computational modeling</subject><subject>Equations</subject><subject>Finite difference methods</subject><subject>Materials</subject><subject>Mathematical model</subject><subject>Moment methods</subject><subject>Time domain analysis</subject><issn>2164-3342</issn><isbn>145770918X</isbn><isbn>9781457709180</isbn><isbn>1457709201</isbn><isbn>9781457709203</isbn><isbn>1457709198</isbn><isbn>9781457709197</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kMtKw0AYhUdUsNa-gG7mBRLnnsmypK0K9bKo4K78mUuNJDMhSS19eyMWV4fvO3AWB6FbSlJKSX6_3Bfzt5QRylLFiOKZOEPXVMgsI_loz_-B6o8LNGFUiYRzwa7QrO-_CCE0l0RrNUEvz_G7CrvkUAUbD7jtYgs7GKoYcBOtq3EJvbN4RAh4H0wMtvptoa6PuB-grB1eLTYL3LjhM9obdOmh7t3slFP0vlpuisdk_frwVMzXiaE8HxJJAHKmrZHCZJkfpQFqvSK-FJqXTmmeKcm41yqXilPLKAHvhC2Nk6ANn6K7v93KObdtu6qB7rg9fcF_ANaQUZc</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Batista, C. G.</creator><creator>Goncalves do Rego, Cassio</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201203</creationdate><title>Moving-window propagation model based on an unconditionally stable FDTD method</title><author>Batista, C. G. ; Goncalves do Rego, Cassio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c139t-50aa928dc54c77fc13ca1df60fb483be68376523f8695631d210afe4dbce5a8c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational modeling</topic><topic>Equations</topic><topic>Finite difference methods</topic><topic>Materials</topic><topic>Mathematical model</topic><topic>Moment methods</topic><topic>Time domain analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Batista, C. G.</creatorcontrib><creatorcontrib>Goncalves do Rego, Cassio</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Batista, C. G.</au><au>Goncalves do Rego, Cassio</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Moving-window propagation model based on an unconditionally stable FDTD method</atitle><btitle>2012 6th European Conference on Antennas and Propagation (EUCAP)</btitle><stitle>EuCAP</stitle><date>2012-03</date><risdate>2012</risdate><spage>1178</spage><epage>1182</epage><pages>1178-1182</pages><issn>2164-3342</issn><isbn>145770918X</isbn><isbn>9781457709180</isbn><eisbn>1457709201</eisbn><eisbn>9781457709203</eisbn><eisbn>1457709198</eisbn><eisbn>9781457709197</eisbn><abstract>This work introduces a finite-difference time-domain (FDTD) propagation model based on a moving window algorithm. The FDTD is evaluated by an unconditionally stable (US) method combined with a material independent (MI) perfectly matched layer (PML) formulation. Thus, the time step used in simulation is no longer restricted by the Courant-Friedrich-Levy (CFL) stability condition and the formulation can be efficiently applied to any real propagation scenario without any modification. The US-IPML formulation is tested through an analytic problem. The proposed propagation model is applied to two idealized terrain profiles involving HF and VHF signals.</abstract><pub>IEEE</pub><doi>10.1109/EuCAP.2012.6206374</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2164-3342 |
ispartof | 2012 6th European Conference on Antennas and Propagation (EUCAP), 2012, p.1178-1182 |
issn | 2164-3342 |
language | eng |
recordid | cdi_ieee_primary_6206374 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational modeling Equations Finite difference methods Materials Mathematical model Moment methods Time domain analysis |
title | Moving-window propagation model based on an unconditionally stable FDTD method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Moving-window%20propagation%20model%20based%20on%20an%20unconditionally%20stable%20FDTD%20method&rft.btitle=2012%206th%20European%20Conference%20on%20Antennas%20and%20Propagation%20(EUCAP)&rft.au=Batista,%20C.%20G.&rft.date=2012-03&rft.spage=1178&rft.epage=1182&rft.pages=1178-1182&rft.issn=2164-3342&rft.isbn=145770918X&rft.isbn_list=9781457709180&rft_id=info:doi/10.1109/EuCAP.2012.6206374&rft.eisbn=1457709201&rft.eisbn_list=9781457709203&rft.eisbn_list=1457709198&rft.eisbn_list=9781457709197&rft_dat=%3Cieee_6IE%3E6206374%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c139t-50aa928dc54c77fc13ca1df60fb483be68376523f8695631d210afe4dbce5a8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6206374&rfr_iscdi=true |