Loading…

Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design

In the future smart grid, both users and power companies can potentially benefit from the economical and environmental advantages of smart pricing methods to more effectively reflect the fluctuations of the wholesale price into the customer side. In addition, smart pricing can be used to seek social...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on smart grid 2012-09, Vol.3 (3), p.1170-1180
Main Authors: Samadi, P., Mohsenian-Rad, H., Schober, R., Wong, V. W. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the future smart grid, both users and power companies can potentially benefit from the economical and environmental advantages of smart pricing methods to more effectively reflect the fluctuations of the wholesale price into the customer side. In addition, smart pricing can be used to seek social benefits and to implement social objectives. To achieve social objectives, the utility company may need to collect various information about users and their energy consumption behavior, which can be challenging. In this paper, we propose an efficient pricing method to tackle this problem. We assume that each user is equipped with an energy consumption controller (ECC) as part of its smart meter. All smart meters are connected to not only the power grid but also a communication infrastructure. This allows two-way communication among smart meters and the utility company. We analytically model each user's preferences and energy consumption patterns in form of a utility function. Based on this model, we propose a Vickrey-Clarke-Groves (VCG) mechanism which aims to maximize the social welfare, i.e., the aggregate utility functions of all users minus the total energy cost. Our design requires that each user provides some information about its energy demand. In return, the energy provider will determine each user's electricity bill payment. Finally, we verify some important properties of our proposed VCG mechanism for demand side management such as efficiency, user truthfulness, and nonnegative transfer. Simulation results confirm that the proposed pricing method can benefit both users and utility companies.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2012.2203341