Loading…
Using KL-divergence and multilingual information to improve ASR for under-resourced languages
Setting out from the point of view that automatic speech recognition (ASR) ought to benefit from data in languages other than the target language, we propose a novel Kullback-Leibler (KL) divergence based method that is able to exploit multilingual information in the form of universal phoneme poster...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Setting out from the point of view that automatic speech recognition (ASR) ought to benefit from data in languages other than the target language, we propose a novel Kullback-Leibler (KL) divergence based method that is able to exploit multilingual information in the form of universal phoneme posterior probabilities conditioned on the acoustics. We formulate a means to train a recognizer on several different languages, and subsequently recognize speech in a target language for which only a small amount of data is available. Taking the Greek SpeechDat(II) data as an example, we show that the proposed formulation is sound, and show that it is able to out-perform a current state-of-the-art HMM/GMM system. We also use a hybrid Tandem-like system to further understand the source of the benefit. |
---|---|
ISSN: | 1520-6149 2379-190X |
DOI: | 10.1109/ICASSP.2012.6289010 |