Loading…

Shape model fitting algorithm without point correspondence

In this paper, we present a Mean Shift algorithm that does not require point correspondence to fit shape models. The observed data and the shape model are represented as mixtures of Gaussians. Using a Bayesian framework, we propose to model the likelihood using the Euclidean distance between the two...

Full description

Saved in:
Bibliographic Details
Main Authors: Arellano, C., Dahyot, R.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 938
container_issue
container_start_page 934
container_title
container_volume
creator Arellano, C.
Dahyot, R.
description In this paper, we present a Mean Shift algorithm that does not require point correspondence to fit shape models. The observed data and the shape model are represented as mixtures of Gaussians. Using a Bayesian framework, we propose to model the likelihood using the Euclidean distance between the two Gaussian mixture density functions while the latent variables are modelled with a Gaussian prior. We show the performance of our MS algorithm for fitting a 2D hand model and a 3D Morphable Model of faces to point clouds.
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6333999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6333999</ieee_id><sourcerecordid>6333999</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8150628884f163e2d3570913466ebf2922fbfb96df1dc00261730969a76e0533</originalsourceid><addsrcrecordid>eNpNjMtqwzAQRUUf0DTNF3SjHzBIM9ZY010JfQQCXTT74McoUXEsY6uU_n0D7aJ3cc7iwL1QCwDLhSvZXqpbW1KF1pDnq3_hRq3m-cOc58EBmIV6eD_Wo-hT6qTXIeYch4Ou-0OaYj6e9NeZ6TPrMcUh6zZNk8xjGjoZWrlT16HuZ1n9eal2z0-79WuxfXvZrB-3RbSVy4W3zhB478tgCQU6dJVhiyWRNAEYIDShYeqC7VpjgGyFhonrisQ4xKW6_72NIrIfp3iqp-89ISIz4w8d3ELR</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shape model fitting algorithm without point correspondence</title><source>IEEE Xplore All Conference Series</source><creator>Arellano, C. ; Dahyot, R.</creator><creatorcontrib>Arellano, C. ; Dahyot, R.</creatorcontrib><description>In this paper, we present a Mean Shift algorithm that does not require point correspondence to fit shape models. The observed data and the shape model are represented as mixtures of Gaussians. Using a Bayesian framework, we propose to model the likelihood using the Euclidean distance between the two Gaussian mixture density functions while the latent variables are modelled with a Gaussian prior. We show the performance of our MS algorithm for fitting a 2D hand model and a 3D Morphable Model of faces to point clouds.</description><identifier>ISSN: 2219-5491</identifier><identifier>ISBN: 1467310689</identifier><identifier>ISBN: 9781467310680</identifier><identifier>EISSN: 2219-5491</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Data models ; Euclidean distance ; Gaussian Mixture Models ; Mean Shift ; Morphable Models ; Robustness ; Shape ; Shape Fitting ; Signal processing algorithms ; Solid modeling</subject><ispartof>2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012, p.934-938</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6333999$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6333999$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Arellano, C.</creatorcontrib><creatorcontrib>Dahyot, R.</creatorcontrib><title>Shape model fitting algorithm without point correspondence</title><title>2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)</title><addtitle>EUSIPCO</addtitle><description>In this paper, we present a Mean Shift algorithm that does not require point correspondence to fit shape models. The observed data and the shape model are represented as mixtures of Gaussians. Using a Bayesian framework, we propose to model the likelihood using the Euclidean distance between the two Gaussian mixture density functions while the latent variables are modelled with a Gaussian prior. We show the performance of our MS algorithm for fitting a 2D hand model and a 3D Morphable Model of faces to point clouds.</description><subject>Computational modeling</subject><subject>Data models</subject><subject>Euclidean distance</subject><subject>Gaussian Mixture Models</subject><subject>Mean Shift</subject><subject>Morphable Models</subject><subject>Robustness</subject><subject>Shape</subject><subject>Shape Fitting</subject><subject>Signal processing algorithms</subject><subject>Solid modeling</subject><issn>2219-5491</issn><issn>2219-5491</issn><isbn>1467310689</isbn><isbn>9781467310680</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNjMtqwzAQRUUf0DTNF3SjHzBIM9ZY010JfQQCXTT74McoUXEsY6uU_n0D7aJ3cc7iwL1QCwDLhSvZXqpbW1KF1pDnq3_hRq3m-cOc58EBmIV6eD_Wo-hT6qTXIeYch4Ou-0OaYj6e9NeZ6TPrMcUh6zZNk8xjGjoZWrlT16HuZ1n9eal2z0-79WuxfXvZrB-3RbSVy4W3zhB478tgCQU6dJVhiyWRNAEYIDShYeqC7VpjgGyFhonrisQ4xKW6_72NIrIfp3iqp-89ISIz4w8d3ELR</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Arellano, C.</creator><creator>Dahyot, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Shape model fitting algorithm without point correspondence</title><author>Arellano, C. ; Dahyot, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8150628884f163e2d3570913466ebf2922fbfb96df1dc00261730969a76e0533</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational modeling</topic><topic>Data models</topic><topic>Euclidean distance</topic><topic>Gaussian Mixture Models</topic><topic>Mean Shift</topic><topic>Morphable Models</topic><topic>Robustness</topic><topic>Shape</topic><topic>Shape Fitting</topic><topic>Signal processing algorithms</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Arellano, C.</creatorcontrib><creatorcontrib>Dahyot, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)【Remote access available】</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arellano, C.</au><au>Dahyot, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shape model fitting algorithm without point correspondence</atitle><btitle>2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)</btitle><stitle>EUSIPCO</stitle><date>2012-08</date><risdate>2012</risdate><spage>934</spage><epage>938</epage><pages>934-938</pages><issn>2219-5491</issn><eissn>2219-5491</eissn><isbn>1467310689</isbn><isbn>9781467310680</isbn><abstract>In this paper, we present a Mean Shift algorithm that does not require point correspondence to fit shape models. The observed data and the shape model are represented as mixtures of Gaussians. Using a Bayesian framework, we propose to model the likelihood using the Euclidean distance between the two Gaussian mixture density functions while the latent variables are modelled with a Gaussian prior. We show the performance of our MS algorithm for fitting a 2D hand model and a 3D Morphable Model of faces to point clouds.</abstract><pub>IEEE</pub><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2219-5491
ispartof 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012, p.934-938
issn 2219-5491
2219-5491
language eng
recordid cdi_ieee_primary_6333999
source IEEE Xplore All Conference Series
subjects Computational modeling
Data models
Euclidean distance
Gaussian Mixture Models
Mean Shift
Morphable Models
Robustness
Shape
Shape Fitting
Signal processing algorithms
Solid modeling
title Shape model fitting algorithm without point correspondence
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shape%20model%20fitting%20algorithm%20without%20point%20correspondence&rft.btitle=2012%20Proceedings%20of%20the%2020th%20European%20Signal%20Processing%20Conference%20(EUSIPCO)&rft.au=Arellano,%20C.&rft.date=2012-08&rft.spage=934&rft.epage=938&rft.pages=934-938&rft.issn=2219-5491&rft.eissn=2219-5491&rft.isbn=1467310689&rft.isbn_list=9781467310680&rft_id=info:doi/&rft_dat=%3Cieee_CHZPO%3E6333999%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-8150628884f163e2d3570913466ebf2922fbfb96df1dc00261730969a76e0533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6333999&rfr_iscdi=true