Loading…
Shape model fitting algorithm without point correspondence
In this paper, we present a Mean Shift algorithm that does not require point correspondence to fit shape models. The observed data and the shape model are represented as mixtures of Gaussians. Using a Bayesian framework, we propose to model the likelihood using the Euclidean distance between the two...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 938 |
container_issue | |
container_start_page | 934 |
container_title | |
container_volume | |
creator | Arellano, C. Dahyot, R. |
description | In this paper, we present a Mean Shift algorithm that does not require point correspondence to fit shape models. The observed data and the shape model are represented as mixtures of Gaussians. Using a Bayesian framework, we propose to model the likelihood using the Euclidean distance between the two Gaussian mixture density functions while the latent variables are modelled with a Gaussian prior. We show the performance of our MS algorithm for fitting a 2D hand model and a 3D Morphable Model of faces to point clouds. |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_6333999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6333999</ieee_id><sourcerecordid>6333999</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-8150628884f163e2d3570913466ebf2922fbfb96df1dc00261730969a76e0533</originalsourceid><addsrcrecordid>eNpNjMtqwzAQRUUf0DTNF3SjHzBIM9ZY010JfQQCXTT74McoUXEsY6uU_n0D7aJ3cc7iwL1QCwDLhSvZXqpbW1KF1pDnq3_hRq3m-cOc58EBmIV6eD_Wo-hT6qTXIeYch4Ou-0OaYj6e9NeZ6TPrMcUh6zZNk8xjGjoZWrlT16HuZ1n9eal2z0-79WuxfXvZrB-3RbSVy4W3zhB478tgCQU6dJVhiyWRNAEYIDShYeqC7VpjgGyFhonrisQ4xKW6_72NIrIfp3iqp-89ISIz4w8d3ELR</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Shape model fitting algorithm without point correspondence</title><source>IEEE Xplore All Conference Series</source><creator>Arellano, C. ; Dahyot, R.</creator><creatorcontrib>Arellano, C. ; Dahyot, R.</creatorcontrib><description>In this paper, we present a Mean Shift algorithm that does not require point correspondence to fit shape models. The observed data and the shape model are represented as mixtures of Gaussians. Using a Bayesian framework, we propose to model the likelihood using the Euclidean distance between the two Gaussian mixture density functions while the latent variables are modelled with a Gaussian prior. We show the performance of our MS algorithm for fitting a 2D hand model and a 3D Morphable Model of faces to point clouds.</description><identifier>ISSN: 2219-5491</identifier><identifier>ISBN: 1467310689</identifier><identifier>ISBN: 9781467310680</identifier><identifier>EISSN: 2219-5491</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Data models ; Euclidean distance ; Gaussian Mixture Models ; Mean Shift ; Morphable Models ; Robustness ; Shape ; Shape Fitting ; Signal processing algorithms ; Solid modeling</subject><ispartof>2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012, p.934-938</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6333999$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,54533,54898,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6333999$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Arellano, C.</creatorcontrib><creatorcontrib>Dahyot, R.</creatorcontrib><title>Shape model fitting algorithm without point correspondence</title><title>2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)</title><addtitle>EUSIPCO</addtitle><description>In this paper, we present a Mean Shift algorithm that does not require point correspondence to fit shape models. The observed data and the shape model are represented as mixtures of Gaussians. Using a Bayesian framework, we propose to model the likelihood using the Euclidean distance between the two Gaussian mixture density functions while the latent variables are modelled with a Gaussian prior. We show the performance of our MS algorithm for fitting a 2D hand model and a 3D Morphable Model of faces to point clouds.</description><subject>Computational modeling</subject><subject>Data models</subject><subject>Euclidean distance</subject><subject>Gaussian Mixture Models</subject><subject>Mean Shift</subject><subject>Morphable Models</subject><subject>Robustness</subject><subject>Shape</subject><subject>Shape Fitting</subject><subject>Signal processing algorithms</subject><subject>Solid modeling</subject><issn>2219-5491</issn><issn>2219-5491</issn><isbn>1467310689</isbn><isbn>9781467310680</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpNjMtqwzAQRUUf0DTNF3SjHzBIM9ZY010JfQQCXTT74McoUXEsY6uU_n0D7aJ3cc7iwL1QCwDLhSvZXqpbW1KF1pDnq3_hRq3m-cOc58EBmIV6eD_Wo-hT6qTXIeYch4Ou-0OaYj6e9NeZ6TPrMcUh6zZNk8xjGjoZWrlT16HuZ1n9eal2z0-79WuxfXvZrB-3RbSVy4W3zhB478tgCQU6dJVhiyWRNAEYIDShYeqC7VpjgGyFhonrisQ4xKW6_72NIrIfp3iqp-89ISIz4w8d3ELR</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Arellano, C.</creator><creator>Dahyot, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Shape model fitting algorithm without point correspondence</title><author>Arellano, C. ; Dahyot, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-8150628884f163e2d3570913466ebf2922fbfb96df1dc00261730969a76e0533</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational modeling</topic><topic>Data models</topic><topic>Euclidean distance</topic><topic>Gaussian Mixture Models</topic><topic>Mean Shift</topic><topic>Morphable Models</topic><topic>Robustness</topic><topic>Shape</topic><topic>Shape Fitting</topic><topic>Signal processing algorithms</topic><topic>Solid modeling</topic><toplevel>online_resources</toplevel><creatorcontrib>Arellano, C.</creatorcontrib><creatorcontrib>Dahyot, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)【Remote access available】</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arellano, C.</au><au>Dahyot, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Shape model fitting algorithm without point correspondence</atitle><btitle>2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)</btitle><stitle>EUSIPCO</stitle><date>2012-08</date><risdate>2012</risdate><spage>934</spage><epage>938</epage><pages>934-938</pages><issn>2219-5491</issn><eissn>2219-5491</eissn><isbn>1467310689</isbn><isbn>9781467310680</isbn><abstract>In this paper, we present a Mean Shift algorithm that does not require point correspondence to fit shape models. The observed data and the shape model are represented as mixtures of Gaussians. Using a Bayesian framework, we propose to model the likelihood using the Euclidean distance between the two Gaussian mixture density functions while the latent variables are modelled with a Gaussian prior. We show the performance of our MS algorithm for fitting a 2D hand model and a 3D Morphable Model of faces to point clouds.</abstract><pub>IEEE</pub><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2219-5491 |
ispartof | 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 2012, p.934-938 |
issn | 2219-5491 2219-5491 |
language | eng |
recordid | cdi_ieee_primary_6333999 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Data models Euclidean distance Gaussian Mixture Models Mean Shift Morphable Models Robustness Shape Shape Fitting Signal processing algorithms Solid modeling |
title | Shape model fitting algorithm without point correspondence |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Shape%20model%20fitting%20algorithm%20without%20point%20correspondence&rft.btitle=2012%20Proceedings%20of%20the%2020th%20European%20Signal%20Processing%20Conference%20(EUSIPCO)&rft.au=Arellano,%20C.&rft.date=2012-08&rft.spage=934&rft.epage=938&rft.pages=934-938&rft.issn=2219-5491&rft.eissn=2219-5491&rft.isbn=1467310689&rft.isbn_list=9781467310680&rft_id=info:doi/&rft_dat=%3Cieee_CHZPO%3E6333999%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i175t-8150628884f163e2d3570913466ebf2922fbfb96df1dc00261730969a76e0533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6333999&rfr_iscdi=true |