Loading…
Mixture weight influence on kernel entropy component analysis and semi-supervised learning using the Lasso
The aim of this paper is two-fold. First, we show that the newly developed spectral method known as kernel entropy component analysis (kernel ECA) captures cluster structure, which is very important in semi-supervised learning, and we provide an analysis showing how mixture weights influence kernel...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this paper is two-fold. First, we show that the newly developed spectral method known as kernel entropy component analysis (kernel ECA) captures cluster structure, which is very important in semi-supervised learning, and we provide an analysis showing how mixture weights influence kernel ECA in a mixture of cluster components setting. Second, we develop a semi-supervised kernel ECA classifier based on the Lasso framework, and report promising results compared to the state-of-the art. |
---|---|
ISSN: | 1551-2541 2378-928X |
DOI: | 10.1109/MLSP.2012.6349814 |