Loading…
Charm-based estimator for non-Gaussian moving-average process
Blind Moving-Average (MA) parameters estimation methods often resort to higher-order-statistics (HOS) in the form of high-order moments or cumulants in order to retrieve the phase of the generating system when no phase information, e.g., minimum-phase, is available. In this work, a new generic stati...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Blind Moving-Average (MA) parameters estimation methods often resort to higher-order-statistics (HOS) in the form of high-order moments or cumulants in order to retrieve the phase of the generating system when no phase information, e.g., minimum-phase, is available. In this work, a new generic statistic is proposed - called the characteristic mean or charm in short - a generalization of the ordinary mean vector, which nonetheless carries a special form of HOS. The charm is parameterized by a parameters-vector called processing-point, which, when properly selected, conveniently controls the trade-off between the charm's HOS information content and the variance of its sample-estimate. A blind charm-based iterative algorithm is proposed, involving data-driven selection of the processing-point. The resulting algorithm - called CHARMA - is shown to significantly outperform ordinary HOS-based algorithms. |
---|---|
DOI: | 10.1109/EEEI.2012.6376968 |