Loading…

Charm-based estimator for non-Gaussian moving-average process

Blind Moving-Average (MA) parameters estimation methods often resort to higher-order-statistics (HOS) in the form of high-order moments or cumulants in order to retrieve the phase of the generating system when no phase information, e.g., minimum-phase, is available. In this work, a new generic stati...

Full description

Saved in:
Bibliographic Details
Main Authors: Slapak, A., Yeredor, A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 5
container_issue
container_start_page 1
container_title
container_volume
creator Slapak, A.
Yeredor, A.
description Blind Moving-Average (MA) parameters estimation methods often resort to higher-order-statistics (HOS) in the form of high-order moments or cumulants in order to retrieve the phase of the generating system when no phase information, e.g., minimum-phase, is available. In this work, a new generic statistic is proposed - called the characteristic mean or charm in short - a generalization of the ordinary mean vector, which nonetheless carries a special form of HOS. The charm is parameterized by a parameters-vector called processing-point, which, when properly selected, conveniently controls the trade-off between the charm's HOS information content and the variance of its sample-estimate. A blind charm-based iterative algorithm is proposed, involving data-driven selection of the processing-point. The resulting algorithm - called CHARMA - is shown to significantly outperform ordinary HOS-based algorithms.
doi_str_mv 10.1109/EEEI.2012.6376968
format conference_proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6376968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6376968</ieee_id><sourcerecordid>6376968</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-9f2244f23731936c3b5aacd878394f04b5faa098bb56018db15f02fbef4739103</originalsourceid><addsrcrecordid>eNo1j89Kw0AYxFdEUGseQLzkBTZ--3_34EFCrIWCl97Lt8lujZik7MaCb2_A9jAMc5jhN4Q8MqgYA_fcNM2m4sB4pYXRTtsrcs-kNkJqC_yaFM7YS-bqlhQ5fwHA0tVWuDvyUn9iGqjHHLoy5LkfcJ5SGReN00jX-JNzj2M5TKd-PFA8hYSHUB7T1IacH8hNxO8cirOvyO6t2dXvdPux3tSvW9o7mKmLnEsZuTCCOaFb4RVi21mzEMgI0quICM56rzQw23mmIvDoQ5RGOAZiRZ7-Z_sQwv6YFsj0uz8fFn9r0Ejf</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Charm-based estimator for non-Gaussian moving-average process</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Slapak, A. ; Yeredor, A.</creator><creatorcontrib>Slapak, A. ; Yeredor, A.</creatorcontrib><description>Blind Moving-Average (MA) parameters estimation methods often resort to higher-order-statistics (HOS) in the form of high-order moments or cumulants in order to retrieve the phase of the generating system when no phase information, e.g., minimum-phase, is available. In this work, a new generic statistic is proposed - called the characteristic mean or charm in short - a generalization of the ordinary mean vector, which nonetheless carries a special form of HOS. The charm is parameterized by a parameters-vector called processing-point, which, when properly selected, conveniently controls the trade-off between the charm's HOS information content and the variance of its sample-estimate. A blind charm-based iterative algorithm is proposed, involving data-driven selection of the processing-point. The resulting algorithm - called CHARMA - is shown to significantly outperform ordinary HOS-based algorithms.</description><identifier>ISBN: 9781467346825</identifier><identifier>ISBN: 1467346829</identifier><identifier>EISBN: 1467346802</identifier><identifier>EISBN: 9781467346801</identifier><identifier>EISBN: 9781467346818</identifier><identifier>EISBN: 1467346810</identifier><identifier>DOI: 10.1109/EEEI.2012.6376968</identifier><language>eng</language><publisher>IEEE</publisher><subject>Educational institutions ; Equations ; Estimation ; Mathematical model ; Noise ; Parameter estimation ; Vectors</subject><ispartof>2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, 2012, p.1-5</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6376968$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6376968$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Slapak, A.</creatorcontrib><creatorcontrib>Yeredor, A.</creatorcontrib><title>Charm-based estimator for non-Gaussian moving-average process</title><title>2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel</title><addtitle>EEEI</addtitle><description>Blind Moving-Average (MA) parameters estimation methods often resort to higher-order-statistics (HOS) in the form of high-order moments or cumulants in order to retrieve the phase of the generating system when no phase information, e.g., minimum-phase, is available. In this work, a new generic statistic is proposed - called the characteristic mean or charm in short - a generalization of the ordinary mean vector, which nonetheless carries a special form of HOS. The charm is parameterized by a parameters-vector called processing-point, which, when properly selected, conveniently controls the trade-off between the charm's HOS information content and the variance of its sample-estimate. A blind charm-based iterative algorithm is proposed, involving data-driven selection of the processing-point. The resulting algorithm - called CHARMA - is shown to significantly outperform ordinary HOS-based algorithms.</description><subject>Educational institutions</subject><subject>Equations</subject><subject>Estimation</subject><subject>Mathematical model</subject><subject>Noise</subject><subject>Parameter estimation</subject><subject>Vectors</subject><isbn>9781467346825</isbn><isbn>1467346829</isbn><isbn>1467346802</isbn><isbn>9781467346801</isbn><isbn>9781467346818</isbn><isbn>1467346810</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j89Kw0AYxFdEUGseQLzkBTZ--3_34EFCrIWCl97Lt8lujZik7MaCb2_A9jAMc5jhN4Q8MqgYA_fcNM2m4sB4pYXRTtsrcs-kNkJqC_yaFM7YS-bqlhQ5fwHA0tVWuDvyUn9iGqjHHLoy5LkfcJ5SGReN00jX-JNzj2M5TKd-PFA8hYSHUB7T1IacH8hNxO8cirOvyO6t2dXvdPux3tSvW9o7mKmLnEsZuTCCOaFb4RVi21mzEMgI0quICM56rzQw23mmIvDoQ5RGOAZiRZ7-Z_sQwv6YFsj0uz8fFn9r0Ejf</recordid><startdate>201211</startdate><enddate>201211</enddate><creator>Slapak, A.</creator><creator>Yeredor, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201211</creationdate><title>Charm-based estimator for non-Gaussian moving-average process</title><author>Slapak, A. ; Yeredor, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-9f2244f23731936c3b5aacd878394f04b5faa098bb56018db15f02fbef4739103</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Educational institutions</topic><topic>Equations</topic><topic>Estimation</topic><topic>Mathematical model</topic><topic>Noise</topic><topic>Parameter estimation</topic><topic>Vectors</topic><toplevel>online_resources</toplevel><creatorcontrib>Slapak, A.</creatorcontrib><creatorcontrib>Yeredor, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Slapak, A.</au><au>Yeredor, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Charm-based estimator for non-Gaussian moving-average process</atitle><btitle>2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel</btitle><stitle>EEEI</stitle><date>2012-11</date><risdate>2012</risdate><spage>1</spage><epage>5</epage><pages>1-5</pages><isbn>9781467346825</isbn><isbn>1467346829</isbn><eisbn>1467346802</eisbn><eisbn>9781467346801</eisbn><eisbn>9781467346818</eisbn><eisbn>1467346810</eisbn><abstract>Blind Moving-Average (MA) parameters estimation methods often resort to higher-order-statistics (HOS) in the form of high-order moments or cumulants in order to retrieve the phase of the generating system when no phase information, e.g., minimum-phase, is available. In this work, a new generic statistic is proposed - called the characteristic mean or charm in short - a generalization of the ordinary mean vector, which nonetheless carries a special form of HOS. The charm is parameterized by a parameters-vector called processing-point, which, when properly selected, conveniently controls the trade-off between the charm's HOS information content and the variance of its sample-estimate. A blind charm-based iterative algorithm is proposed, involving data-driven selection of the processing-point. The resulting algorithm - called CHARMA - is shown to significantly outperform ordinary HOS-based algorithms.</abstract><pub>IEEE</pub><doi>10.1109/EEEI.2012.6376968</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781467346825
ispartof 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, 2012, p.1-5
issn
language eng
recordid cdi_ieee_primary_6376968
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Educational institutions
Equations
Estimation
Mathematical model
Noise
Parameter estimation
Vectors
title Charm-based estimator for non-Gaussian moving-average process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A50%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Charm-based%20estimator%20for%20non-Gaussian%20moving-average%20process&rft.btitle=2012%20IEEE%2027th%20Convention%20of%20Electrical%20and%20Electronics%20Engineers%20in%20Israel&rft.au=Slapak,%20A.&rft.date=2012-11&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.isbn=9781467346825&rft.isbn_list=1467346829&rft_id=info:doi/10.1109/EEEI.2012.6376968&rft.eisbn=1467346802&rft.eisbn_list=9781467346801&rft.eisbn_list=9781467346818&rft.eisbn_list=1467346810&rft_dat=%3Cieee_6IE%3E6376968%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-9f2244f23731936c3b5aacd878394f04b5faa098bb56018db15f02fbef4739103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6376968&rfr_iscdi=true