Loading…
Mrs: MapReduce for Scientific Computing in Python
The MapReduce parallel programming model is designed for large-scale data processing, but its benefits, such as fault tolerance and automatic message routing, are also helpful for computationally-intensive algorithms. However, popular MapReduce frameworks such as Hadoop are slow for many scientific...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The MapReduce parallel programming model is designed for large-scale data processing, but its benefits, such as fault tolerance and automatic message routing, are also helpful for computationally-intensive algorithms. However, popular MapReduce frameworks such as Hadoop are slow for many scientific applications and are inconvenient on supercomputers and clusters which are common in research institutions. Mrs is a Python-based MapReduce framework that is well suited for scientific computing. We present comparisons of programs and run scripts to argue that Mrs is more convenient than Hadoop, the most popular MapReduce implementation. We also demonstrate that Mrs outperforms Hadoop for several types of problems that are relevant to scientific computing. In particular, Mrs demonstrates per-iteration overhead of about 0.3 seconds for Particle Swarm Optimization, while Hadoop takes at least 30 seconds for each MapReduce operation, a difference of two orders of magnitude. |
---|---|
DOI: | 10.1109/SC.Companion.2012.84 |