Loading…
Path planning with PH G2 splines in ℝ2
In this article, we justify the use of parametric planar Pythagorean Hodograph spline curves in path planning. The elegant properties of such splines enable us to design an efficient interpolator algorithm, more precise than the classical Taylor interpolators and faster than an interpolator based on...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Gajny, L. Bearee, R. Nyiri, E. Gibaru, O. |
description | In this article, we justify the use of parametric planar Pythagorean Hodograph spline curves in path planning. The elegant properties of such splines enable us to design an efficient interpolator algorithm, more precise than the classical Taylor interpolators and faster than an interpolator based on arc length computations. |
doi_str_mv | 10.1109/IConSCS.2012.6502455 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6502455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6502455</ieee_id><sourcerecordid>6502455</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-bc23d684ebd92167adf5a2d5e28556fceb29cd5b68465df81f0c4bdebb7072ba3</originalsourceid><addsrcrecordid>eNo1j81KAzEUhSMiqHWeQBdZupnx5uZvZimDtoVCC63griSTRCNjHJqCuPc1fLk-iQPW1eGD8x04hNwwqBiD5m7efqR1u64QGFZKAgopT8glE0pzUBqfT0nR6PqfuT4nRc5vADDqGoS6ILcrs3-lQ29SiumFfsaRVjM6RZqHPiafaUz08P2DV-QsmD774pgT8vT4sGln5WI5nbf3izIykPvSdsidqoW3rkGmtHFBGnTSYy2lCp232HRO2rGipAs1C9AJ67y1GjRawyfk-m83eu-3wy6-m93X9niO_wL8CUMq</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Path planning with PH G2 splines in ℝ2</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gajny, L. ; Bearee, R. ; Nyiri, E. ; Gibaru, O.</creator><creatorcontrib>Gajny, L. ; Bearee, R. ; Nyiri, E. ; Gibaru, O.</creatorcontrib><description>In this article, we justify the use of parametric planar Pythagorean Hodograph spline curves in path planning. The elegant properties of such splines enable us to design an efficient interpolator algorithm, more precise than the classical Taylor interpolators and faster than an interpolator based on arc length computations.</description><identifier>ISBN: 9781467306737</identifier><identifier>ISBN: 1467306738</identifier><identifier>EISBN: 146730672X</identifier><identifier>EISBN: 9781467306744</identifier><identifier>EISBN: 9781467306720</identifier><identifier>EISBN: 1467306746</identifier><identifier>DOI: 10.1109/IConSCS.2012.6502455</identifier><language>eng</language><publisher>IEEE</publisher><subject>Path planning ; Pythagorean-hodograph ; Splines</subject><ispartof>2012 1st International Conference on Systems and Computer Science (ICSCS), 2012, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6502455$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6502455$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gajny, L.</creatorcontrib><creatorcontrib>Bearee, R.</creatorcontrib><creatorcontrib>Nyiri, E.</creatorcontrib><creatorcontrib>Gibaru, O.</creatorcontrib><title>Path planning with PH G2 splines in ℝ2</title><title>2012 1st International Conference on Systems and Computer Science (ICSCS)</title><addtitle>IConSCS</addtitle><description>In this article, we justify the use of parametric planar Pythagorean Hodograph spline curves in path planning. The elegant properties of such splines enable us to design an efficient interpolator algorithm, more precise than the classical Taylor interpolators and faster than an interpolator based on arc length computations.</description><subject>Path planning</subject><subject>Pythagorean-hodograph</subject><subject>Splines</subject><isbn>9781467306737</isbn><isbn>1467306738</isbn><isbn>146730672X</isbn><isbn>9781467306744</isbn><isbn>9781467306720</isbn><isbn>1467306746</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2012</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81KAzEUhSMiqHWeQBdZupnx5uZvZimDtoVCC63griSTRCNjHJqCuPc1fLk-iQPW1eGD8x04hNwwqBiD5m7efqR1u64QGFZKAgopT8glE0pzUBqfT0nR6PqfuT4nRc5vADDqGoS6ILcrs3-lQ29SiumFfsaRVjM6RZqHPiafaUz08P2DV-QsmD774pgT8vT4sGln5WI5nbf3izIykPvSdsidqoW3rkGmtHFBGnTSYy2lCp232HRO2rGipAs1C9AJ67y1GjRawyfk-m83eu-3wy6-m93X9niO_wL8CUMq</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Gajny, L.</creator><creator>Bearee, R.</creator><creator>Nyiri, E.</creator><creator>Gibaru, O.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201208</creationdate><title>Path planning with PH G2 splines in ℝ2</title><author>Gajny, L. ; Bearee, R. ; Nyiri, E. ; Gibaru, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-bc23d684ebd92167adf5a2d5e28556fceb29cd5b68465df81f0c4bdebb7072ba3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Path planning</topic><topic>Pythagorean-hodograph</topic><topic>Splines</topic><toplevel>online_resources</toplevel><creatorcontrib>Gajny, L.</creatorcontrib><creatorcontrib>Bearee, R.</creatorcontrib><creatorcontrib>Nyiri, E.</creatorcontrib><creatorcontrib>Gibaru, O.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gajny, L.</au><au>Bearee, R.</au><au>Nyiri, E.</au><au>Gibaru, O.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Path planning with PH G2 splines in ℝ2</atitle><btitle>2012 1st International Conference on Systems and Computer Science (ICSCS)</btitle><stitle>IConSCS</stitle><date>2012-08</date><risdate>2012</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>9781467306737</isbn><isbn>1467306738</isbn><eisbn>146730672X</eisbn><eisbn>9781467306744</eisbn><eisbn>9781467306720</eisbn><eisbn>1467306746</eisbn><abstract>In this article, we justify the use of parametric planar Pythagorean Hodograph spline curves in path planning. The elegant properties of such splines enable us to design an efficient interpolator algorithm, more precise than the classical Taylor interpolators and faster than an interpolator based on arc length computations.</abstract><pub>IEEE</pub><doi>10.1109/IConSCS.2012.6502455</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781467306737 |
ispartof | 2012 1st International Conference on Systems and Computer Science (ICSCS), 2012, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6502455 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Path planning Pythagorean-hodograph Splines |
title | Path planning with PH G2 splines in ℝ2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Path%20planning%20with%20PH%20G2%20splines%20in%20%E2%84%9D2&rft.btitle=2012%201st%20International%20Conference%20on%20Systems%20and%20Computer%20Science%20(ICSCS)&rft.au=Gajny,%20L.&rft.date=2012-08&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=9781467306737&rft.isbn_list=1467306738&rft_id=info:doi/10.1109/IConSCS.2012.6502455&rft.eisbn=146730672X&rft.eisbn_list=9781467306744&rft.eisbn_list=9781467306720&rft.eisbn_list=1467306746&rft_dat=%3Cieee_6IE%3E6502455%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i105t-bc23d684ebd92167adf5a2d5e28556fceb29cd5b68465df81f0c4bdebb7072ba3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6502455&rfr_iscdi=true |