Loading…
All the Stabilizer Codes of Distance 3
We give necessary and sufficient conditions for the existence of stabilizer codes [[n, k, 3]] of distance 3 for qubits: n-k ≥ ⌈log 2 (3n + 1)⌉ + ∈ n , where ∈ n = 1 if n = 84 m -1/3 + {±1, 2} or n = 4 m+2 -1/3 -{1, 2, 3} for some integer m ≥ 1 and ∈ n = 0 otherwise. Or equivalently, a code [[n, n -...
Saved in:
Published in: | IEEE transactions on information theory 2013-08, Vol.59 (8), p.5179-5185 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We give necessary and sufficient conditions for the existence of stabilizer codes [[n, k, 3]] of distance 3 for qubits: n-k ≥ ⌈log 2 (3n + 1)⌉ + ∈ n , where ∈ n = 1 if n = 84 m -1/3 + {±1, 2} or n = 4 m+2 -1/3 -{1, 2, 3} for some integer m ≥ 1 and ∈ n = 0 otherwise. Or equivalently, a code [[n, n - r, 3]] exists if and only if n ≤ (4 r - 1)/3, (4 r - 1)/3 - n ∉ {1, 2, 3} for even r and n ≤ 8 (4 r-3 -1)/3, 8(4 -3 - 1)/3 - n ≠ 1 for odd r. Given an arbitrary length n, we present an explicit construction for an optimal quantum stabilizer code of distance 3 that saturates the above bound. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2013.2259138 |