Loading…

A Lagrangian Dual Approach to the Single-Source Localization Problem

The single-source localization problem (SSLP), which is nonconvex by its nature, appears in several important multidisciplinary fields such as signal processing and the global positioning system. In this paper, we cast SSLP as a Euclidean distance embedding problem and study a Lagrangian dual approa...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2013-08, Vol.61 (15), p.3815-3826
Main Authors: Qi, Hou-Duo, Xiu, Naihua, Yuan, Xiaoming
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The single-source localization problem (SSLP), which is nonconvex by its nature, appears in several important multidisciplinary fields such as signal processing and the global positioning system. In this paper, we cast SSLP as a Euclidean distance embedding problem and study a Lagrangian dual approach. It is proved that the Lagrangian dual problem must have an optimal solution under the generalized Slater condition. We provide a sufficient condition for the zero-duality gap and establish the equivalence between the Lagrangian dual approach and the existing Generalized Trust-Region Subproblem (GTRS) approach studied by Beck et al. ["Exact and Approximate Solutions of Source Localization Problems," IEEE Trans. Signal Process., vol. 56, pp. 1770-1778, 2008]. We also reveal new implications of the assumptions made by the GTRS approach. Moreover, the Lagrangian dual approach has a straightforward extension to the multiple-source localization problem. Numerical simulations demonstrate that the Lagrangian dual approach can produce localization of similar quality as the GTRS and can significantly outperform the well-known semidefinite programming solver for the multiple source localization problem on the tested cases.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2013.2264814