Loading…

First Principles Simulations of Nanoscale Silicon Devices With Uniaxial Strain

We report parameter-free first principle atomistic simulations of quantum transport in Si nanochannels under uniaxial strain. Our model is based on the density functional theory (DFT) analysis within the Keldysh nonequilibrium Green's function (NEGF) formalism. By employing a recently proposed...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2013-10, Vol.60 (10), p.3527-3533
Main Authors: Lining Zhang, Zahid, Ferdows, Yu Zhu, Lei Liu, Jian Wang, Hong Guo, Chan, Philip Ching Ho, Mansun Chan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report parameter-free first principle atomistic simulations of quantum transport in Si nanochannels under uniaxial strain. Our model is based on the density functional theory (DFT) analysis within the Keldysh nonequilibrium Green's function (NEGF) formalism. By employing a recently proposed semi-local exchange along with the coherent potential approximation we investigate the transport properties of two-terminal Si nanodevices composed of large number of atoms and atomic dopants. Simulations of the two-terminal device based on the NEGF-DFT are compared quantitatively with the traditional continuum model to establish an important accuracy benchmark. For bulk Si crystals, we calculated the effects of uniaxial strain on band edges and effective masses. For two-terminal Si nanochannels with their channel length of ~ 10 nm, we study the effects of uniaxial strain on the electron transport. With 0.5% uniaxial tensile strain, the conductance along [110] direction is increased by ~ 8% and that along [001] is increased by ~ 2%, which are comparable with the other reported results. This paper qualitatively and quantitatively shows the current capability of first principle atomistic simulations of nanoscale semiconductor devices.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2013.2275231