Loading…

First Principles Simulations of Nanoscale Silicon Devices With Uniaxial Strain

We report parameter-free first principle atomistic simulations of quantum transport in Si nanochannels under uniaxial strain. Our model is based on the density functional theory (DFT) analysis within the Keldysh nonequilibrium Green's function (NEGF) formalism. By employing a recently proposed...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electron devices 2013-10, Vol.60 (10), p.3527-3533
Main Authors: Lining Zhang, Zahid, Ferdows, Yu Zhu, Lei Liu, Jian Wang, Hong Guo, Chan, Philip Ching Ho, Mansun Chan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-dd04f4c71a9fad76821aa667dfdb2f9526aeb45ddec641be193e9ef6ab2363473
cites cdi_FETCH-LOGICAL-c293t-dd04f4c71a9fad76821aa667dfdb2f9526aeb45ddec641be193e9ef6ab2363473
container_end_page 3533
container_issue 10
container_start_page 3527
container_title IEEE transactions on electron devices
container_volume 60
creator Lining Zhang
Zahid, Ferdows
Yu Zhu
Lei Liu
Jian Wang
Hong Guo
Chan, Philip Ching Ho
Mansun Chan
description We report parameter-free first principle atomistic simulations of quantum transport in Si nanochannels under uniaxial strain. Our model is based on the density functional theory (DFT) analysis within the Keldysh nonequilibrium Green's function (NEGF) formalism. By employing a recently proposed semi-local exchange along with the coherent potential approximation we investigate the transport properties of two-terminal Si nanodevices composed of large number of atoms and atomic dopants. Simulations of the two-terminal device based on the NEGF-DFT are compared quantitatively with the traditional continuum model to establish an important accuracy benchmark. For bulk Si crystals, we calculated the effects of uniaxial strain on band edges and effective masses. For two-terminal Si nanochannels with their channel length of ~ 10 nm, we study the effects of uniaxial strain on the electron transport. With 0.5% uniaxial tensile strain, the conductance along [110] direction is increased by ~ 8% and that along [001] is increased by ~ 2%, which are comparable with the other reported results. This paper qualitatively and quantitatively shows the current capability of first principle atomistic simulations of nanoscale semiconductor devices.
doi_str_mv 10.1109/TED.2013.2275231
format article
fullrecord <record><control><sourceid>pascalfrancis_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6578149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6578149</ieee_id><sourcerecordid>27895923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-dd04f4c71a9fad76821aa667dfdb2f9526aeb45ddec641be193e9ef6ab2363473</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU02LqfmNclkKX2oUKrQFpfDnTwwMp0pySj6701pcXU5nHMunA-hW0omlBL9sJnPJoxQPmFMlYzTMzSiZakKLYU8RyNCaFVoXvFLdJXSZ5ZSCDZCq0WIacBvMXQm7FuX8DrsvloYQt8l3Hu8gq5PBlqXjTaYvsMz9x1MDr6H4QNvuwA_AVq8HiKE7hpdeGiTuzndMdou5pvpc7F8fXqZPi4LwzQfCmuJ8MIoCtqDVbJiFEBKZb1tmNclk-AaUVrrjBS0cVRzp52X0DAuuVB8jMjxr4l9StH5eh_DDuJvTUl94FFnHvWBR33ikSv3x8oeDnt8hLw4_feYqnSpGc-5u2MuOOf-bVmqigrN_wCqqWoJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First Principles Simulations of Nanoscale Silicon Devices With Uniaxial Strain</title><source>IEEE Xplore (Online service)</source><creator>Lining Zhang ; Zahid, Ferdows ; Yu Zhu ; Lei Liu ; Jian Wang ; Hong Guo ; Chan, Philip Ching Ho ; Mansun Chan</creator><creatorcontrib>Lining Zhang ; Zahid, Ferdows ; Yu Zhu ; Lei Liu ; Jian Wang ; Hong Guo ; Chan, Philip Ching Ho ; Mansun Chan</creatorcontrib><description>We report parameter-free first principle atomistic simulations of quantum transport in Si nanochannels under uniaxial strain. Our model is based on the density functional theory (DFT) analysis within the Keldysh nonequilibrium Green's function (NEGF) formalism. By employing a recently proposed semi-local exchange along with the coherent potential approximation we investigate the transport properties of two-terminal Si nanodevices composed of large number of atoms and atomic dopants. Simulations of the two-terminal device based on the NEGF-DFT are compared quantitatively with the traditional continuum model to establish an important accuracy benchmark. For bulk Si crystals, we calculated the effects of uniaxial strain on band edges and effective masses. For two-terminal Si nanochannels with their channel length of ~ 10 nm, we study the effects of uniaxial strain on the electron transport. With 0.5% uniaxial tensile strain, the conductance along [110] direction is increased by ~ 8% and that along [001] is increased by ~ 2%, which are comparable with the other reported results. This paper qualitatively and quantitatively shows the current capability of first principle atomistic simulations of nanoscale semiconductor devices.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2013.2275231</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Density functional theory (DFT) ; Doping ; Effective mass ; Electronics ; Exact sciences and technology ; first principles ; Molecular electronics, nanoelectronics ; Nanoscale devices ; nonequilibrium Green's function (NEGF) ; quantum transport ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Tensile strain ; Uniaxial strain</subject><ispartof>IEEE transactions on electron devices, 2013-10, Vol.60 (10), p.3527-3533</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-dd04f4c71a9fad76821aa667dfdb2f9526aeb45ddec641be193e9ef6ab2363473</citedby><cites>FETCH-LOGICAL-c293t-dd04f4c71a9fad76821aa667dfdb2f9526aeb45ddec641be193e9ef6ab2363473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6578149$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27895923$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lining Zhang</creatorcontrib><creatorcontrib>Zahid, Ferdows</creatorcontrib><creatorcontrib>Yu Zhu</creatorcontrib><creatorcontrib>Lei Liu</creatorcontrib><creatorcontrib>Jian Wang</creatorcontrib><creatorcontrib>Hong Guo</creatorcontrib><creatorcontrib>Chan, Philip Ching Ho</creatorcontrib><creatorcontrib>Mansun Chan</creatorcontrib><title>First Principles Simulations of Nanoscale Silicon Devices With Uniaxial Strain</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>We report parameter-free first principle atomistic simulations of quantum transport in Si nanochannels under uniaxial strain. Our model is based on the density functional theory (DFT) analysis within the Keldysh nonequilibrium Green's function (NEGF) formalism. By employing a recently proposed semi-local exchange along with the coherent potential approximation we investigate the transport properties of two-terminal Si nanodevices composed of large number of atoms and atomic dopants. Simulations of the two-terminal device based on the NEGF-DFT are compared quantitatively with the traditional continuum model to establish an important accuracy benchmark. For bulk Si crystals, we calculated the effects of uniaxial strain on band edges and effective masses. For two-terminal Si nanochannels with their channel length of ~ 10 nm, we study the effects of uniaxial strain on the electron transport. With 0.5% uniaxial tensile strain, the conductance along [110] direction is increased by ~ 8% and that along [001] is increased by ~ 2%, which are comparable with the other reported results. This paper qualitatively and quantitatively shows the current capability of first principle atomistic simulations of nanoscale semiconductor devices.</description><subject>Applied sciences</subject><subject>Density functional theory (DFT)</subject><subject>Doping</subject><subject>Effective mass</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>first principles</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanoscale devices</subject><subject>nonequilibrium Green's function (NEGF)</subject><subject>quantum transport</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Tensile strain</subject><subject>Uniaxial strain</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKt7wU02LqfmNclkKX2oUKrQFpfDnTwwMp0pySj6701pcXU5nHMunA-hW0omlBL9sJnPJoxQPmFMlYzTMzSiZakKLYU8RyNCaFVoXvFLdJXSZ5ZSCDZCq0WIacBvMXQm7FuX8DrsvloYQt8l3Hu8gq5PBlqXjTaYvsMz9x1MDr6H4QNvuwA_AVq8HiKE7hpdeGiTuzndMdou5pvpc7F8fXqZPi4LwzQfCmuJ8MIoCtqDVbJiFEBKZb1tmNclk-AaUVrrjBS0cVRzp52X0DAuuVB8jMjxr4l9StH5eh_DDuJvTUl94FFnHvWBR33ikSv3x8oeDnt8hLw4_feYqnSpGc-5u2MuOOf-bVmqigrN_wCqqWoJ</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Lining Zhang</creator><creator>Zahid, Ferdows</creator><creator>Yu Zhu</creator><creator>Lei Liu</creator><creator>Jian Wang</creator><creator>Hong Guo</creator><creator>Chan, Philip Ching Ho</creator><creator>Mansun Chan</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131001</creationdate><title>First Principles Simulations of Nanoscale Silicon Devices With Uniaxial Strain</title><author>Lining Zhang ; Zahid, Ferdows ; Yu Zhu ; Lei Liu ; Jian Wang ; Hong Guo ; Chan, Philip Ching Ho ; Mansun Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-dd04f4c71a9fad76821aa667dfdb2f9526aeb45ddec641be193e9ef6ab2363473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Density functional theory (DFT)</topic><topic>Doping</topic><topic>Effective mass</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>first principles</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanoscale devices</topic><topic>nonequilibrium Green's function (NEGF)</topic><topic>quantum transport</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Tensile strain</topic><topic>Uniaxial strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lining Zhang</creatorcontrib><creatorcontrib>Zahid, Ferdows</creatorcontrib><creatorcontrib>Yu Zhu</creatorcontrib><creatorcontrib>Lei Liu</creatorcontrib><creatorcontrib>Jian Wang</creatorcontrib><creatorcontrib>Hong Guo</creatorcontrib><creatorcontrib>Chan, Philip Ching Ho</creatorcontrib><creatorcontrib>Mansun Chan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lining Zhang</au><au>Zahid, Ferdows</au><au>Yu Zhu</au><au>Lei Liu</au><au>Jian Wang</au><au>Hong Guo</au><au>Chan, Philip Ching Ho</au><au>Mansun Chan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Principles Simulations of Nanoscale Silicon Devices With Uniaxial Strain</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2013-10-01</date><risdate>2013</risdate><volume>60</volume><issue>10</issue><spage>3527</spage><epage>3533</epage><pages>3527-3533</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>We report parameter-free first principle atomistic simulations of quantum transport in Si nanochannels under uniaxial strain. Our model is based on the density functional theory (DFT) analysis within the Keldysh nonequilibrium Green's function (NEGF) formalism. By employing a recently proposed semi-local exchange along with the coherent potential approximation we investigate the transport properties of two-terminal Si nanodevices composed of large number of atoms and atomic dopants. Simulations of the two-terminal device based on the NEGF-DFT are compared quantitatively with the traditional continuum model to establish an important accuracy benchmark. For bulk Si crystals, we calculated the effects of uniaxial strain on band edges and effective masses. For two-terminal Si nanochannels with their channel length of ~ 10 nm, we study the effects of uniaxial strain on the electron transport. With 0.5% uniaxial tensile strain, the conductance along [110] direction is increased by ~ 8% and that along [001] is increased by ~ 2%, which are comparable with the other reported results. This paper qualitatively and quantitatively shows the current capability of first principle atomistic simulations of nanoscale semiconductor devices.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2013.2275231</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2013-10, Vol.60 (10), p.3527-3533
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_6578149
source IEEE Xplore (Online service)
subjects Applied sciences
Density functional theory (DFT)
Doping
Effective mass
Electronics
Exact sciences and technology
first principles
Molecular electronics, nanoelectronics
Nanoscale devices
nonequilibrium Green's function (NEGF)
quantum transport
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon
Tensile strain
Uniaxial strain
title First Principles Simulations of Nanoscale Silicon Devices With Uniaxial Strain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Principles%20Simulations%20of%20Nanoscale%20Silicon%20Devices%20With%20Uniaxial%20Strain&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Lining%20Zhang&rft.date=2013-10-01&rft.volume=60&rft.issue=10&rft.spage=3527&rft.epage=3533&rft.pages=3527-3533&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2013.2275231&rft_dat=%3Cpascalfrancis_ieee_%3E27895923%3C/pascalfrancis_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-dd04f4c71a9fad76821aa667dfdb2f9526aeb45ddec641be193e9ef6ab2363473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6578149&rfr_iscdi=true