Loading…
First Principles Simulations of Nanoscale Silicon Devices With Uniaxial Strain
We report parameter-free first principle atomistic simulations of quantum transport in Si nanochannels under uniaxial strain. Our model is based on the density functional theory (DFT) analysis within the Keldysh nonequilibrium Green's function (NEGF) formalism. By employing a recently proposed...
Saved in:
Published in: | IEEE transactions on electron devices 2013-10, Vol.60 (10), p.3527-3533 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-dd04f4c71a9fad76821aa667dfdb2f9526aeb45ddec641be193e9ef6ab2363473 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-dd04f4c71a9fad76821aa667dfdb2f9526aeb45ddec641be193e9ef6ab2363473 |
container_end_page | 3533 |
container_issue | 10 |
container_start_page | 3527 |
container_title | IEEE transactions on electron devices |
container_volume | 60 |
creator | Lining Zhang Zahid, Ferdows Yu Zhu Lei Liu Jian Wang Hong Guo Chan, Philip Ching Ho Mansun Chan |
description | We report parameter-free first principle atomistic simulations of quantum transport in Si nanochannels under uniaxial strain. Our model is based on the density functional theory (DFT) analysis within the Keldysh nonequilibrium Green's function (NEGF) formalism. By employing a recently proposed semi-local exchange along with the coherent potential approximation we investigate the transport properties of two-terminal Si nanodevices composed of large number of atoms and atomic dopants. Simulations of the two-terminal device based on the NEGF-DFT are compared quantitatively with the traditional continuum model to establish an important accuracy benchmark. For bulk Si crystals, we calculated the effects of uniaxial strain on band edges and effective masses. For two-terminal Si nanochannels with their channel length of ~ 10 nm, we study the effects of uniaxial strain on the electron transport. With 0.5% uniaxial tensile strain, the conductance along [110] direction is increased by ~ 8% and that along [001] is increased by ~ 2%, which are comparable with the other reported results. This paper qualitatively and quantitatively shows the current capability of first principle atomistic simulations of nanoscale semiconductor devices. |
doi_str_mv | 10.1109/TED.2013.2275231 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_ieee_</sourceid><recordid>TN_cdi_ieee_primary_6578149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6578149</ieee_id><sourcerecordid>27895923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-dd04f4c71a9fad76821aa667dfdb2f9526aeb45ddec641be193e9ef6ab2363473</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7wU02LqfmNclkKX2oUKrQFpfDnTwwMp0pySj6701pcXU5nHMunA-hW0omlBL9sJnPJoxQPmFMlYzTMzSiZakKLYU8RyNCaFVoXvFLdJXSZ5ZSCDZCq0WIacBvMXQm7FuX8DrsvloYQt8l3Hu8gq5PBlqXjTaYvsMz9x1MDr6H4QNvuwA_AVq8HiKE7hpdeGiTuzndMdou5pvpc7F8fXqZPi4LwzQfCmuJ8MIoCtqDVbJiFEBKZb1tmNclk-AaUVrrjBS0cVRzp52X0DAuuVB8jMjxr4l9StH5eh_DDuJvTUl94FFnHvWBR33ikSv3x8oeDnt8hLw4_feYqnSpGc-5u2MuOOf-bVmqigrN_wCqqWoJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First Principles Simulations of Nanoscale Silicon Devices With Uniaxial Strain</title><source>IEEE Xplore (Online service)</source><creator>Lining Zhang ; Zahid, Ferdows ; Yu Zhu ; Lei Liu ; Jian Wang ; Hong Guo ; Chan, Philip Ching Ho ; Mansun Chan</creator><creatorcontrib>Lining Zhang ; Zahid, Ferdows ; Yu Zhu ; Lei Liu ; Jian Wang ; Hong Guo ; Chan, Philip Ching Ho ; Mansun Chan</creatorcontrib><description>We report parameter-free first principle atomistic simulations of quantum transport in Si nanochannels under uniaxial strain. Our model is based on the density functional theory (DFT) analysis within the Keldysh nonequilibrium Green's function (NEGF) formalism. By employing a recently proposed semi-local exchange along with the coherent potential approximation we investigate the transport properties of two-terminal Si nanodevices composed of large number of atoms and atomic dopants. Simulations of the two-terminal device based on the NEGF-DFT are compared quantitatively with the traditional continuum model to establish an important accuracy benchmark. For bulk Si crystals, we calculated the effects of uniaxial strain on band edges and effective masses. For two-terminal Si nanochannels with their channel length of ~ 10 nm, we study the effects of uniaxial strain on the electron transport. With 0.5% uniaxial tensile strain, the conductance along [110] direction is increased by ~ 8% and that along [001] is increased by ~ 2%, which are comparable with the other reported results. This paper qualitatively and quantitatively shows the current capability of first principle atomistic simulations of nanoscale semiconductor devices.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2013.2275231</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Density functional theory (DFT) ; Doping ; Effective mass ; Electronics ; Exact sciences and technology ; first principles ; Molecular electronics, nanoelectronics ; Nanoscale devices ; nonequilibrium Green's function (NEGF) ; quantum transport ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Tensile strain ; Uniaxial strain</subject><ispartof>IEEE transactions on electron devices, 2013-10, Vol.60 (10), p.3527-3533</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-dd04f4c71a9fad76821aa667dfdb2f9526aeb45ddec641be193e9ef6ab2363473</citedby><cites>FETCH-LOGICAL-c293t-dd04f4c71a9fad76821aa667dfdb2f9526aeb45ddec641be193e9ef6ab2363473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6578149$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27895923$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lining Zhang</creatorcontrib><creatorcontrib>Zahid, Ferdows</creatorcontrib><creatorcontrib>Yu Zhu</creatorcontrib><creatorcontrib>Lei Liu</creatorcontrib><creatorcontrib>Jian Wang</creatorcontrib><creatorcontrib>Hong Guo</creatorcontrib><creatorcontrib>Chan, Philip Ching Ho</creatorcontrib><creatorcontrib>Mansun Chan</creatorcontrib><title>First Principles Simulations of Nanoscale Silicon Devices With Uniaxial Strain</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>We report parameter-free first principle atomistic simulations of quantum transport in Si nanochannels under uniaxial strain. Our model is based on the density functional theory (DFT) analysis within the Keldysh nonequilibrium Green's function (NEGF) formalism. By employing a recently proposed semi-local exchange along with the coherent potential approximation we investigate the transport properties of two-terminal Si nanodevices composed of large number of atoms and atomic dopants. Simulations of the two-terminal device based on the NEGF-DFT are compared quantitatively with the traditional continuum model to establish an important accuracy benchmark. For bulk Si crystals, we calculated the effects of uniaxial strain on band edges and effective masses. For two-terminal Si nanochannels with their channel length of ~ 10 nm, we study the effects of uniaxial strain on the electron transport. With 0.5% uniaxial tensile strain, the conductance along [110] direction is increased by ~ 8% and that along [001] is increased by ~ 2%, which are comparable with the other reported results. This paper qualitatively and quantitatively shows the current capability of first principle atomistic simulations of nanoscale semiconductor devices.</description><subject>Applied sciences</subject><subject>Density functional theory (DFT)</subject><subject>Doping</subject><subject>Effective mass</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>first principles</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Nanoscale devices</subject><subject>nonequilibrium Green's function (NEGF)</subject><subject>quantum transport</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Tensile strain</subject><subject>Uniaxial strain</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKt7wU02LqfmNclkKX2oUKrQFpfDnTwwMp0pySj6701pcXU5nHMunA-hW0omlBL9sJnPJoxQPmFMlYzTMzSiZakKLYU8RyNCaFVoXvFLdJXSZ5ZSCDZCq0WIacBvMXQm7FuX8DrsvloYQt8l3Hu8gq5PBlqXjTaYvsMz9x1MDr6H4QNvuwA_AVq8HiKE7hpdeGiTuzndMdou5pvpc7F8fXqZPi4LwzQfCmuJ8MIoCtqDVbJiFEBKZb1tmNclk-AaUVrrjBS0cVRzp52X0DAuuVB8jMjxr4l9StH5eh_DDuJvTUl94FFnHvWBR33ikSv3x8oeDnt8hLw4_feYqnSpGc-5u2MuOOf-bVmqigrN_wCqqWoJ</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Lining Zhang</creator><creator>Zahid, Ferdows</creator><creator>Yu Zhu</creator><creator>Lei Liu</creator><creator>Jian Wang</creator><creator>Hong Guo</creator><creator>Chan, Philip Ching Ho</creator><creator>Mansun Chan</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20131001</creationdate><title>First Principles Simulations of Nanoscale Silicon Devices With Uniaxial Strain</title><author>Lining Zhang ; Zahid, Ferdows ; Yu Zhu ; Lei Liu ; Jian Wang ; Hong Guo ; Chan, Philip Ching Ho ; Mansun Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-dd04f4c71a9fad76821aa667dfdb2f9526aeb45ddec641be193e9ef6ab2363473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Density functional theory (DFT)</topic><topic>Doping</topic><topic>Effective mass</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>first principles</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Nanoscale devices</topic><topic>nonequilibrium Green's function (NEGF)</topic><topic>quantum transport</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Tensile strain</topic><topic>Uniaxial strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lining Zhang</creatorcontrib><creatorcontrib>Zahid, Ferdows</creatorcontrib><creatorcontrib>Yu Zhu</creatorcontrib><creatorcontrib>Lei Liu</creatorcontrib><creatorcontrib>Jian Wang</creatorcontrib><creatorcontrib>Hong Guo</creatorcontrib><creatorcontrib>Chan, Philip Ching Ho</creatorcontrib><creatorcontrib>Mansun Chan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lining Zhang</au><au>Zahid, Ferdows</au><au>Yu Zhu</au><au>Lei Liu</au><au>Jian Wang</au><au>Hong Guo</au><au>Chan, Philip Ching Ho</au><au>Mansun Chan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Principles Simulations of Nanoscale Silicon Devices With Uniaxial Strain</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2013-10-01</date><risdate>2013</risdate><volume>60</volume><issue>10</issue><spage>3527</spage><epage>3533</epage><pages>3527-3533</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>We report parameter-free first principle atomistic simulations of quantum transport in Si nanochannels under uniaxial strain. Our model is based on the density functional theory (DFT) analysis within the Keldysh nonequilibrium Green's function (NEGF) formalism. By employing a recently proposed semi-local exchange along with the coherent potential approximation we investigate the transport properties of two-terminal Si nanodevices composed of large number of atoms and atomic dopants. Simulations of the two-terminal device based on the NEGF-DFT are compared quantitatively with the traditional continuum model to establish an important accuracy benchmark. For bulk Si crystals, we calculated the effects of uniaxial strain on band edges and effective masses. For two-terminal Si nanochannels with their channel length of ~ 10 nm, we study the effects of uniaxial strain on the electron transport. With 0.5% uniaxial tensile strain, the conductance along [110] direction is increased by ~ 8% and that along [001] is increased by ~ 2%, which are comparable with the other reported results. This paper qualitatively and quantitatively shows the current capability of first principle atomistic simulations of nanoscale semiconductor devices.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2013.2275231</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2013-10, Vol.60 (10), p.3527-3533 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_6578149 |
source | IEEE Xplore (Online service) |
subjects | Applied sciences Density functional theory (DFT) Doping Effective mass Electronics Exact sciences and technology first principles Molecular electronics, nanoelectronics Nanoscale devices nonequilibrium Green's function (NEGF) quantum transport Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silicon Tensile strain Uniaxial strain |
title | First Principles Simulations of Nanoscale Silicon Devices With Uniaxial Strain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A15%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Principles%20Simulations%20of%20Nanoscale%20Silicon%20Devices%20With%20Uniaxial%20Strain&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Lining%20Zhang&rft.date=2013-10-01&rft.volume=60&rft.issue=10&rft.spage=3527&rft.epage=3533&rft.pages=3527-3533&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2013.2275231&rft_dat=%3Cpascalfrancis_ieee_%3E27895923%3C/pascalfrancis_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-dd04f4c71a9fad76821aa667dfdb2f9526aeb45ddec641be193e9ef6ab2363473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6578149&rfr_iscdi=true |