Loading…
Advanced SIMD: Extending the reach of contemporary SIMD architectures
SIMD extensions have gained widespread acceptance in modern microprocessors as a way to exploit data-level parallelism in general-purpose cores. Popular SIMD architectures (e.g. Intel SSE/AVX) have evolved by adding support for wider registers and datapaths, and advanced features like indexed memory...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | SIMD extensions have gained widespread acceptance in modern microprocessors as a way to exploit data-level parallelism in general-purpose cores. Popular SIMD architectures (e.g. Intel SSE/AVX) have evolved by adding support for wider registers and datapaths, and advanced features like indexed memory accesses, per-lane predication and inter-lane instructions, at the cost of additional silicon area and design complexity. This paper evaluates the performance impact of such advanced features on a set of workloads considered hard to vectorize for traditional SIMD architectures. Their sensitivity to the most relevant design parameters (e.g. register/datapath width and L1 data cache configuration) is quantified and discussed. We developed an ARMv7 NEON based ISA extension (ARGON), augmented a cycle accurate simulation framework for it, and derived a set of benchmarks from the Berkeley dwarfs. Our analyses demonstrate how ARGON can, depending on the structure of an algorithm, achieve speedups of 1.5x to 16x. |
---|---|
ISSN: | 1530-1591 1558-1101 |
DOI: | 10.7873/DATE.2014.037 |