Loading…
Efficient Graph Similarity Search Over Large Graph Databases
Since many graph data are often noisy and incomplete in real applications, it has become increasingly important to retrieve graphs g in the graph database D that approximately match the query graph q, rather than exact graph matching. In this paper, we study the problem of graph similarity search, w...
Saved in:
Published in: | IEEE transactions on knowledge and data engineering 2015-04, Vol.27 (4), p.964-978 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Since many graph data are often noisy and incomplete in real applications, it has become increasingly important to retrieve graphs g in the graph database D that approximately match the query graph q, rather than exact graph matching. In this paper, we study the problem of graph similarity search, which retrieves graphs that are similar to a given query graph under the constraint of graph edit distance. We propose a systematic method for edit-distance based similarity search problem. Specifically, we derive two lower bounds, i.e., partition-based and branch-based bounds, from different perspectives. More importantly, a hybrid lower bound incorporating both ideas of the two lower bounds is proposed, which is theoretically proved to have higher (at least not lower) pruning power than using the two lower bounds together. We also present a uniform index structure, namely u-tree, to facilitate effective pruning and efficient query processing. Extensive experiments confirm that our proposed approach outperforms the existing approaches significantly, in terms of both the pruning power and query response time. |
---|---|
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/TKDE.2014.2349924 |