Loading…
Thermionic-Field Emission Barrier Between Nanocrystalline Diamond and Epitaxial 4H-SiC
A novel Schottky-like rectifying heterojunction between two low-doped widebandgap semiconductors is presented. The conduction mechanism of p-type nanocrystalline diamond and n-type 4H-SiC with a near-unity ideality factor was determined via two-terminal current-voltage measurements as a function of...
Saved in:
Published in: | IEEE electron device letters 2014-12, Vol.35 (12), p.1173-1175 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel Schottky-like rectifying heterojunction between two low-doped widebandgap semiconductors is presented. The conduction mechanism of p-type nanocrystalline diamond and n-type 4H-SiC with a near-unity ideality factor was determined via two-terminal current-voltage measurements as a function of temperature and SiC doping concentration. I-V characteristics at 300 and 510 K were fit at low forward bias with good agreement using thermionic emission theory. A wide temperature range ideality factor analysis revealed a thermionic-field rectifying barrier to low-doped and moderately doped SiC epilayers, which could lead to improved contacts for SiC-based piezoresistors, resonators, and microelectromechanical systems. |
---|---|
ISSN: | 0741-3106 1558-0563 |
DOI: | 10.1109/LED.2014.2364596 |