Loading…
On the Covering Radius of MDS Codes
For a linear maximum distance separable (MDS) code with redundancy r, the covering radius is either r or r -1. However, for r > 3, few examples of q-ary linear MDS codes with radius r -1 are known, including the Reed-Solomon codes with length q + 1. In this paper, for redundancies r as large as 1...
Saved in:
Published in: | IEEE transactions on information theory 2015-02, Vol.61 (2), p.801-811 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For a linear maximum distance separable (MDS) code with redundancy r, the covering radius is either r or r -1. However, for r > 3, few examples of q-ary linear MDS codes with radius r -1 are known, including the Reed-Solomon codes with length q + 1. In this paper, for redundancies r as large as 12√q, infinite families of q-ary MDS codes with covering radius r - 1 and length less than q + 1 are constructed. These codes are obtained from algebraic-geometric codes arising from elliptic curves. For most pairs (r, q) with r ≤ 12√q, these are the shortest q-ary MDS codes with covering radius r - 1. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2014.2385084 |