Loading…
Assessing the Economic Benefits of Compressed Air Energy Storage for Mitigating Wind Curtailment
Renewable energy generation in the All-Island of Ireland (AII) is set to increase by 2020 due to binding renewable energy targets. To achieve these targets, there will be periods of time when 75% of electricity will be generated mainly from onshore wind. Currently, the AII system can accommodate a 5...
Saved in:
Published in: | IEEE transactions on sustainable energy 2015-07, Vol.6 (3), p.1021-1028 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Renewable energy generation in the All-Island of Ireland (AII) is set to increase by 2020 due to binding renewable energy targets. To achieve these targets, there will be periods of time when 75% of electricity will be generated mainly from onshore wind. Currently, the AII system can accommodate a 50% maximum permissible instantaneous level of wind generation. The system operators must make system-wide wind curtailment decisions to ensure that this level is not breached. Subsequently, the ability to limit wind curtailment using large-scale energy storage such as pumped hydroelectric energy storage and compressed air energy storage (CAES) is increasingly being scrutinized as a viable option. Thus, the aims of this paper are to estimate the level of wind curtailment on the 2020 AII system for various scenarios including with and without CAES, and assess and quantify the revenue loss due to wind curtailment using power systems simulation software PLEXOS. |
---|---|
ISSN: | 1949-3029 1949-3037 |
DOI: | 10.1109/TSTE.2014.2376698 |