Loading…
Finite-Time Stabilization and Optimal Feedback Control
Finite-time stability involves dynamical systems whose trajectories converge to an equilibrium state in finite time. Since finite-time convergence implies nonuniqueness of system solutions in reverse time, such systems possess non-Lipschitzian dynamics. Sufficient conditions for finite-time stabilit...
Saved in:
Published in: | IEEE transactions on automatic control 2016-04, Vol.61 (4), p.1069-1074 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Finite-time stability involves dynamical systems whose trajectories converge to an equilibrium state in finite time. Since finite-time convergence implies nonuniqueness of system solutions in reverse time, such systems possess non-Lipschitzian dynamics. Sufficient conditions for finite-time stability have been developed in the literature using continuous Lyapunov functions. In this technical note, we develop a framework for addressing the problem of optimal nonlinear analysis and feedback control for finite-time stability and finite-time stabilization. Finite-time stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function that satisfies a differential inequality involving fractional powers. This Lyapunov function can clearly be seen to be the solution to a partial differential equation that corresponds to a steady-state form of the Hamilton-Jacobi-Bellman equation, and hence, guaranteeing both finite-time stability and optimality. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2015.2454891 |