Loading…

GrCS: Granular Computing-Based Crowd Segmentation

Crowd segmentation is important in serving as the basis for a wide range of crowd analysis tasks such as density estimation and behavior understanding. However, due to interocclusions, perspective distortion, clutter background, and random crowd distribution, localizing crowd segments is technically...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics 2017-05, Vol.47 (5), p.1157-1168
Main Authors: Kok, Ven Jyn, Chan, Chee Seng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Crowd segmentation is important in serving as the basis for a wide range of crowd analysis tasks such as density estimation and behavior understanding. However, due to interocclusions, perspective distortion, clutter background, and random crowd distribution, localizing crowd segments is technically a very challenging task. This paper proposes a novel crowd segmentation framework-based on granular computing (GrCS) to enable the problem of crowd segmentation to be conceptualized at different levels of granularity, and to map problems into computationally tractable subproblems. It shows that by exploiting the correlation among pixel granules, we are able to aggregate structurally similar pixels into meaningful atomic structure granules. This is useful in outlining natural boundaries between crowd and background (i.e., noncrowd) regions. From the structure granules, we infer the crowd and background regions by granular information classification. GrCS is scene-independent and can be applied effectively to crowd scenes with a variety of physical layout and crowdedness. Extensive experiments have been conducted on hundreds of real and synthetic crowd scenes. The results demonstrate that by exploiting the correlation among granules, we can outline the natural boundaries of structurally similar crowd and background regions necessary for crowd segmentation.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2016.2538765