Loading…

A Conformal FDTD Method With Accurate Waveport Excitation and S-Parameter Extraction

We demonstrate a conformal finite-difference time domain (CFDTD) technique with accurate waveport excitation and S-parameter extraction. We discuss, under the CFDTD framework, object modeling with effective subcell material, impedance calibration for the conformal modeled coaxial feed, waveport mode...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation 2016-10, Vol.64 (10), p.4504-4509
Main Authors: Guanbo Chen, Stang, John, Moghaddam, Mahta
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We demonstrate a conformal finite-difference time domain (CFDTD) technique with accurate waveport excitation and S-parameter extraction. We discuss, under the CFDTD framework, object modeling with effective subcell material, impedance calibration for the conformal modeled coaxial feed, waveport mode calculation with a newly developed conformal 2-D finite-difference frequency domain solver, waveport excitation with a modified total field scattered field method, and a modified S-parameter extraction scheme that is compatible with the CFDTD method. Lastly, we present two specific validation cases intended asWe demonstrate a conformal finite-difference time domain (CFDTD) technique with accurate waveport excitation and S-parameter extraction. We discuss, under the CFDTD framework, object modeling with effective subcell material, impedance calibration for the conformal modeled coaxial feed, waveport mode calculation with a newly developed conformal 2-D finite-difference frequency domain solver, waveport excitation with a modified total field scattered field method, and a modified S-parameter extraction scheme that is compatible with the CFDTD method. Lastly, we present two specific validation cases intended as relevant precursors to the inverse scattering application: modeling of the reflection coefficient of a tapered patch antenna and modeling of the transmission coefficient in a probe-fed rectangular waveguide. relevant precursors to the inverse scattering application: modeling of the reflection coefficient of a tapered patch antenna and modeling of the transmission coefficient in a probe-fed rectangular waveguide.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2016.2588522