Loading…
On repeated-root cyclic codes
A parity-check matrix for a q-ary repeated-root cyclic code is derived using the Hasse derivative. Then the minimum distance of a q-ary repeated-root cyclic code is expressed in terms of the minimum distance of a certain simple-root cyclic code. With the help of this result, several binary repeated-...
Saved in:
Published in: | IEEE transactions on information theory 1991-03, Vol.37 (2), p.337-342 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A parity-check matrix for a q-ary repeated-root cyclic code is derived using the Hasse derivative. Then the minimum distance of a q-ary repeated-root cyclic code is expressed in terms of the minimum distance of a certain simple-root cyclic code. With the help of this result, several binary repeated-root cyclic codes of lengths up to n=62 are shown to contain the largest known number of codewords for their given length and minimum distance. The relative minimum distance d/sub min//n of q-ary repeated-root cyclic codes of rate r>or=R is proven to tend to zero as the largest multiplicity of a root of the generator g(x) increases to infinity. It is further shown that repeated-root cycle codes cannot be asymptotically better than simple-root cyclic codes.< > |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/18.75249 |