Loading…

Super-resolution of pulsed multipath channels for delay spread characterization

Frequency selective channels can be measured by either a continuous wave frequency sweep, which gives directly the transfer function, or by sounding the channel with pulses, which results in the impulse response. When the sounding pulse becomes a chirp-type waveform, the two approaches become simila...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications 1999-03, Vol.47 (3), p.343-347
Main Authors: Vaughan, R.G., Scott, N.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Frequency selective channels can be measured by either a continuous wave frequency sweep, which gives directly the transfer function, or by sounding the channel with pulses, which results in the impulse response. When the sounding pulse becomes a chirp-type waveform, the two approaches become similar. Simple rectangular pulses can be used for partial, but usually sufficient, channel characterization. In this paper, the process is described for resolving impulse response components into bins smaller than the duration of the sounding pulse and smaller than the reciprocal of the channel bandwidth. From such "super-resolution", the delay spread of the propagation channel can be established accurately even when it is much less than the sounding pulse duration, allowing longer, higher energy pulses to be used for channel characterization. The process is demonstrated using subtractive deconvolution where a loop gain of unity is shown to be stable; and a modified inverse filter technique, in which the modification caters for the spectral zeros of the sounding pulse.
ISSN:0090-6778
1558-0857
DOI:10.1109/26.752811