Loading…
Minerva: Enabling Low-Power, Highly-Accurate Deep Neural Network Accelerators
The continued success of Deep Neural Networks (DNNs) in classification tasks has sparked a trend of accelerating their execution with specialized hardware. While published designs easily give an order of magnitude improvement over general-purpose hardware, few look beyond an initial implementation....
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The continued success of Deep Neural Networks (DNNs) in classification tasks has sparked a trend of accelerating their execution with specialized hardware. While published designs easily give an order of magnitude improvement over general-purpose hardware, few look beyond an initial implementation. This paper presents Minerva, a highly automated co-design approach across the algorithm, architecture, and circuit levels to optimize DNN hardware accelerators. Compared to an established fixed-point accelerator baseline, we show that fine-grained, heterogeneous datatype optimization reduces power by 1.5×; aggressive, inline predication and pruning of small activity values further reduces power by 2.0×; and active hardware fault detection coupled with domain-aware error mitigation eliminates an additional 2.7× through lowering SRAM voltages. Across five datasets, these optimizations provide a collective average of 8.1× power reduction over an accelerator baseline without compromising DNN model accuracy. Minerva enables highly accurate, ultra-low power DNN accelerators (in the range of tens of milliwatts), making it feasible to deploy DNNs in power-constrained IoT and mobile devices. |
---|---|
ISSN: | 1063-6897 2575-713X |
DOI: | 10.1109/ISCA.2016.32 |