Loading…
Decorrelation of Neutral Vector Variables: Theory and Applications
In this paper, we propose novel strategies for neutral vector variable decorrelation. Two fundamental invertible transformations, namely, serial nonlinear transformation and parallel nonlinear transformation, are proposed to carry out the decorrelation. For a neutral vector variable, which is not mu...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2018-01, Vol.29 (1), p.129-143 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we propose novel strategies for neutral vector variable decorrelation. Two fundamental invertible transformations, namely, serial nonlinear transformation and parallel nonlinear transformation, are proposed to carry out the decorrelation. For a neutral vector variable, which is not multivariate-Gaussian distributed, the conventional principal component analysis cannot yield mutually independent scalar variables. With the two proposed transformations, a highly negatively correlated neutral vector can be transformed to a set of mutually independent scalar variables with the same degrees of freedom. We also evaluate the decorrelation performances for the vectors generated from a single Dirichlet distribution and a mixture of Dirichlet distributions. The mutual independence is verified with the distance correlation measurement. The advantages of the proposed decorrelation strategies are intensively studied and demonstrated with synthesized data and practical application evaluations. |
---|---|
ISSN: | 2162-237X 2162-2388 2162-2388 |
DOI: | 10.1109/TNNLS.2016.2616445 |