Loading…
FEDD: Feature Extraction for Explicit Concept Drift Detection in time series
A time series is a sequence of observations collected over fixed sampling intervals. Several real-world dynamic processes can be modeled as a time series, such as stock price movements, exchange rates, temperatures, among others. As a special kind of data stream, a time series may present concept dr...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A time series is a sequence of observations collected over fixed sampling intervals. Several real-world dynamic processes can be modeled as a time series, such as stock price movements, exchange rates, temperatures, among others. As a special kind of data stream, a time series may present concept drift, which affects negatively time series analysis and forecasting. Explicit drift detection methods based on monitoring the time series features may provide a better understanding of how concepts evolve over time than methods based on monitoring the forecasting error of a base predictor. In this paper, we propose an online explicit drift detection method that identifies concept drifts in time series by monitoring time series features, called Feature Extraction for Explicit Concept Drift Detection (FEDD). Computational experiments showed that FEDD performed better than error-based approaches in several linear and nonlinear artificial time series with abrupt and gradual concept drifts. |
---|---|
ISSN: | 2161-4407 |
DOI: | 10.1109/IJCNN.2016.7727274 |